This commit is contained in:
david 2019-11-01 11:58:19 +01:00
parent e64d8f63df
commit 30a008144d
14 changed files with 1187 additions and 806 deletions

View File

@ -1,3 +1,4 @@
\newpage
\appendix
# Expected and observed cross section limits
@ -7,83 +8,84 @@
| Mass [TeV] | Exp. limit [pb] | Upper limit [pb] | Lower limit [pb] | Obs. limit [pb] |
|------------|-----------------|------------------|------------------|-----------------|
| 1.6 | 0.10406 | 0.14720 | 0.07371 | 0.08165 |
| 1.8 | 0.07656 | 0.10800 | 0.05441 | 0.04114 |
| 2.0 | 0.05422 | 0.07605 | 0.03879 | 0.04043 |
| 2.5 | 0.02430 | 0.03408 | 0.01747 | 0.04052 |
| 3.0 | 0.01262 | 0.01775 | 0.00904 | 0.02109 |
| 3.5 | 0.00703 | 0.00992 | 0.00502 | 0.00399 |
| 4.0 | 0.00424 | 0.00603 | 0.00300 | 0.00172 |
| 4.5 | 0.00355 | 0.00478 | 0.00273 | 0.00249 |
| 5.0 | 0.00269 | 0.00357 | 0.00211 | 0.00240 |
| 6.0 | 0.00103 | 0.00160 | 0.00068 | 0.00062 |
| 7.0 | 0.00063 | 0.00105 | 0.00039 | 0.00086 |
| 1.6 | 0.10 | 0.15 | 0.074 | 0.082 |
| 1.8 | 0.077 | 0.11 | 0.054 | 0.041 |
| 2.0 | 0.054 | 0.076 | 0.039 | 0.040 |
| 2.5 | 0.024 | 0.034 | 0.017 | 0.041 |
| 3.0 | 0.013 | 0.018 | 0.009 | 0.021 |
| 3.5 | 0.0070 | 0.0099 | 0.005 | 0.004 |
| 4.0 | 0.0042 | 0.0060 | 0.003 | 0.0017 |
| 4.0 | 0.0042 | 0.0060 | 0.003 | 0.0017 |
| 4.5 | 0.0035 | 0.0048 | 0.0027 | 0.0025 |
| 5.0 | 0.0027 | 0.0036 | 0.0021 | 0.0024 |
| 6.0 | 0.0010 | 0.0016 | 0.00068 | 0.00062 |
| 7.0 | 0.00063 | 0.0010 | 0.00039 | 0.00086 |
: Cross Section limits using 2016 data and the deep boosted tagger for the decay to qW
| Mass [TeV] | Exp. limit [pb] | Upper limit [pb] | Lower limit [pb] | Obs. limit [pb] |
|------------|-----------------|------------------|------------------|-----------------|
| 1.6 | 0.17750 | 0.25179 | 0.12572 | 0.38242 |
| 1.8 | 0.11125 | 0.15870 | 0.07826 | 0.11692 |
| 2.0 | 0.08188 | 0.11549 | 0.05799 | 0.09528 |
| 2.5 | 0.03328 | 0.04668 | 0.02373 | 0.03653 |
| 3.0 | 0.01648 | 0.02338 | 0.01181 | 0.01108 |
| 3.5 | 0.00840 | 0.01195 | 0.00593 | 0.00683 |
| 4.0 | 0.00459 | 0.00666 | 0.00322 | 0.00342 |
| 4.5 | 0.00276 | 0.00412 | 0.00190 | 0.00366 |
| 5.0 | 0.00177 | 0.00271 | 0.00118 | 0.00401 |
| 6.0 | 0.00110 | 0.00175 | 0.00071 | 0.00155 |
| 7.0 | 0.00065 | 0.00108 | 0.00041 | 0.00108 |
| 1.6 | 0.18 | 0.25 | 0.13 | 0.38 |
| 1.8 | 0.11 | 0.16 | 0.078 | 0.12 |
| 2.0 | 0.082 | 0.12 | 0.058 | 0.095 |
| 2.5 | 0.033 | 0.047 | 0.024 | 0.037 |
| 3.0 | 0.016 | 0.023 | 0.012 | 0.011 |
| 3.5 | 0.0084 | 0.012 | 0.0059 | 0.0068 |
| 4.0 | 0.0046 | 0.0067 | 0.0032 | 0.0034 |
| 4.5 | 0.0028 | 0.0041 | 0.0019 | 0.0037 |
| 5.0 | 0.0018 | 0.0027 | 0.0012 | 0.0040 |
| 6.0 | 0.0011 | 0.0017 | 0.00071 | 0.0016 |
| 7.0 | 0.00065 | 0.0011 | 0.00041 | 0.0011 |
: Cross Section limits using 2016 data and the N-subjettiness tagger for the decay to qZ
| Mass [TeV] | Exp. limit [pb] | Upper limit [pb] | Lower limit [pb] | Obs. limit [pb] |
|------------|-----------------|------------------|------------------|-----------------|
| 1.6 | 0.08687 | 0.12254 | 0.06174 | 0.06987 |
| 1.8 | 0.06719 | 0.09477 | 0.04832 | 0.03424 |
| 2.0 | 0.04734 | 0.06640 | 0.03405 | 0.03310 |
| 2.5 | 0.01867 | 0.02619 | 0.01343 | 0.03214 |
| 3.0 | 0.01043 | 0.01463 | 0.00744 | 0.01773 |
| 3.5 | 0.00596 | 0.00840 | 0.00426 | 0.00347 |
| 4.0 | 0.00353 | 0.00500 | 0.00250 | 0.00140 |
| 4.5 | 0.00233 | 0.00335 | 0.00164 | 0.00181 |
| 5.0 | 0.00157 | 0.00231 | 0.00110 | 0.00188 |
| 6.0 | 0.00082 | 0.00126 | 0.00054 | 0.00049 |
| 1.6 | 0.087 | 0.12 | 0.062 | 0.07 |
| 1.8 | 0.067 | 0.095 | 0.048 | 0.034 |
| 2.0 | 0.047 | 0.066 | 0.034 | 0.033 |
| 2.5 | 0.019 | 0.026 | 0.013 | 0.032 |
| 3.0 | 0.010 | 0.015 | 0.0074 | 0.018 |
| 3.5 | 0.0060 | 0.0084 | 0.0043 | 0.0035 |
| 4.0 | 0.0035 | 0.0050 | 0.0025 | 0.0014 |
| 4.5 | 0.0023 | 0.0034 | 0.0016 | 0.0018 |
| 5.0 | 0.0016 | 0.0023 | 0.0011 | 0.0019 |
| 6.0 | 0.00082 | 0.0013 | 0.00054 | 0.00049 |
| 7.0 | 0.00050 | 0.00083 | 0.00031 | 0.00066 |
: Cross Section limits using 2016 data and deep boosted tagger for the decay to qZ
| Mass [TeV] | Exp. limit [pb] | Upper limit [pb] | Lower limit [pb] | Obs. limit [pb] |
|------------|-----------------|------------------|------------------|-----------------|
| 1.6 | 0.16687 | 0.23805 | 0.11699 | 0.35999 |
| 1.8 | 0.12750 | 0.17934 | 0.09138 | 0.12891 |
| 2.0 | 0.09062 | 0.12783 | 0.06474 | 0.09977 |
| 2.5 | 0.03391 | 0.04783 | 0.02422 | 0.03754 |
| 3.0 | 0.01781 | 0.02513 | 0.01277 | 0.01159 |
| 3.5 | 0.00949 | 0.01346 | 0.00678 | 0.00741 |
| 4.0 | 0.00494 | 0.00711 | 0.00349 | 0.00362 |
| 4.5 | 0.00293 | 0.00429 | 0.00203 | 0.00368 |
| 5.0 | 0.00188 | 0.00284 | 0.00127 | 0.00426 |
| 6.0 | 0.00102 | 0.00161 | 0.00066 | 0.00155 |
| 7.0 | 0.00053 | 0.00085 | 0.00034 | 0.00085 |
| 1.6 | 0.15 | 0.22 | 0.11 | 0.33 |
| 1.8 | 0.10 | 0.14 | 0.072 | 0.085 |
| 2.0 | 0.077 | 0.11 | 0.056 | 0.064 |
| 2.5 | 0.027 | 0.038 | 0.019 | 0.041 |
| 3.0 | 0.015 | 0.021 | 0.010 | 0.0087 |
| 3.5 | 0.0084 | 0.012 | 0.006 | 0.0066 |
| 4.0 | 0.0049 | 0.0071 | 0.0035 | 0.0045 |
| 4.5 | 0.0032 | 0.0046 | 0.0022 | 0.0026 |
| 5.0 | 0.0022 | 0.0033 | 0.0015 | 0.0041 |
| 6.0 | 0.0012 | 0.0019 | 0.00081 | 0.0018 |
| 7.0 | 0.00057 | 0.00092 | 0.00037 | 0.00093 |
: Cross Section limits using the combined data and the N-subjettiness tagger for the decay to qW
| Mass [TeV] | Exp. limit [pb] | Upper limit [pb] | Lower limit [pb] | Obs. limit [pb] |
|------------|-----------------|------------------|------------------|-----------------|
| 1.6 | 0.05703 | 0.07999 | 0.04088 | 0.03366 |
| 1.8 | 0.03953 | 0.05576 | 0.02833 | 0.04319 |
| 2.0 | 0.02844 | 0.03989 | 0.02045 | 0.04755 |
| 2.5 | 0.01270 | 0.01781 | 0.00913 | 0.01519 |
| 3.0 | 0.00658 | 0.00923 | 0.00473 | 0.01218 |
| 3.5 | 0.00376 | 0.00529 | 0.00269 | 0.00474 |
| 4.0 | 0.00218 | 0.00309 | 0.00156 | 0.00114 |
| 4.5 | 0.00132 | 0.00188 | 0.00094 | 0.00068 |
| 5.0 | 0.00084 | 0.00122 | 0.00060 | 0.00059 |
| 1.6 | 0.057 | 0.08 | 0.041 | 0.034 |
| 1.8 | 0.040 | 0.056 | 0.028 | 0.043 |
| 2.0 | 0.028 | 0.040 | 0.020 | 0.048 |
| 2.5 | 0.013 | 0.018 | 0.0091 | 0.015 |
| 3.0 | 0.0066 | 0.0092 | 0.0047 | 0.012 |
| 3.5 | 0.0038 | 0.0053 | 0.0027 | 0.0047 |
| 4.0 | 0.0022 | 0.0031 | 0.0016 | 0.0011 |
| 4.5 | 0.0013 | 0.0019 | 0.00094 | 0.00068 |
| 5.0 | 0.00084 | 0.0012 | 0.00060 | 0.00059 |
| 6.0 | 0.00044 | 0.00066 | 0.00030 | 0.00041 |
| 7.0 | 0.00022 | 0.00036 | 0.00014 | 0.00043 |
@ -92,49 +94,66 @@
| Mass [TeV] | Exp. limit [pb] | Upper limit [pb] | Lower limit [pb] | Obs. limit [pb] |
|------------|-----------------|------------------|------------------|-----------------|
| 1.6 | 0.06656 | 0.09495 | 0.04698 | 0.12374 |
| 1.8 | 0.04281 | 0.06141 | 0.03001 | 0.05422 |
| 2.0 | 0.03297 | 0.04650 | 0.02363 | 0.04658 |
| 2.5 | 0.01328 | 0.01868 | 0.00950 | 0.01109 |
| 3.0 | 0.00650 | 0.00917 | 0.00464 | 0.00502 |
| 3.5 | 0.00338 | 0.00479 | 0.00241 | 0.00408 |
| 4.0 | 0.00182 | 0.00261 | 0.00129 | 0.00127 |
| 4.5 | 0.00107 | 0.00156 | 0.00074 | 0.00123 |
| 5.0 | 0.00068 | 0.00102 | 0.00046 | 0.00149 |
| 1.6 | 0.067 | 0.095 | 0.047 | 0.12 |
| 1.8 | 0.043 | 0.061 | 0.030 | 0.054 |
| 2.0 | 0.033 | 0.047 | 0.024 | 0.047 |
| 2.5 | 0.013 | 0.019 | 0.0095 | 0.011 |
| 3.0 | 0.0065 | 0.0092 | 0.0046 | 0.0050 |
| 3.5 | 0.0034 | 0.0048 | 0.0024 | 0.0041 |
| 4.0 | 0.0018 | 0.0026 | 0.0013 | 0.0013 |
| 4.5 | 0.0011 | 0.0016 | 0.00074 | 0.0012 |
| 5.0 | 0.00068 | 0.0010 | 0.00046 | 0.0015 |
| 6.0 | 0.00038 | 0.00060 | 0.00024 | 0.00034 |
| 7.0 | 0.00021 | 0.00035 | 0.00013 | 0.00046 |
: Cross Section limits using the combined data and the N-subjettiness tagger for the decay to qZ
| Mass [TeV] | Exp. limit [pb] | Upper limit [pb] | Lower limit [pb] | Obs. limit [pb] |
|------------|-----------------|------------------|------------------|-----------------|
| 1.6 | 0.05125 | 0.07188 | 0.03667 | 0.02993 |
| 1.8 | 0.03547 | 0.04989 | 0.02551 | 0.03614 |
| 2.0 | 0.02523 | 0.03539 | 0.01815 | 0.04177 |
| 2.5 | 0.01059 | 0.01485 | 0.00761 | 0.01230 |
| 3.0 | 0.00576 | 0.00808 | 0.00412 | 0.01087 |
| 3.5 | 0.00327 | 0.00460 | 0.00234 | 0.00425 |
| 4.0 | 0.00190 | 0.00269 | 0.00136 | 0.00097 |
| 4.5 | 0.00119 | 0.00168 | 0.00084 | 0.00059 |
| 5.0 | 0.00077 | 0.00110 | 0.00054 | 0.00051 |
| 1.6 | 0.051 | 0.072 | 0.037 | 0.030 |
| 1.8 | 0.035 | 0.050 | 0.026 | 0.036 |
| 2.0 | 0.025 | 0.035 | 0.018 | 0.042 |
| 2.5 | 0.011 | 0.015 | 0.0076 | 0.012 |
| 3.0 | 0.0058 | 0.0081 | 0.0041 | 0.011 |
| 3.5 | 0.0033 | 0.0046 | 0.0023 | 0.0042 |
| 4.0 | 0.0019 | 0.0027 | 0.0014 | 0.00097 |
| 4.5 | 0.0012 | 0.0017 | 0.00084 | 0.00059 |
| 5.0 | 0.00077 | 0.0011 | 0.00054 | 0.00051 |
| 6.0 | 0.00039 | 0.00057 | 0.00026 | 0.00036 |
| 7.0 | 0.00019 | 0.00031 | 0.00013 | 0.00036 |
: Cross Section limits using the combined data and deep boosted tagger for the decay to qZ
| Mass [TeV] | Exp. limit [pb] | Upper limit [pb] | Lower limit [pb] | Obs. limit [pb] |
|------------|-----------------|------------------|------------------|-----------------|
| 1.6 | 0.07719 | 0.10949 | 0.05467 | 0.14090 |
| 1.8 | 0.05297 | 0.07493 | 0.03752 | 0.06690 |
| 2.0 | 0.03875 | 0.05466 | 0.02768 | 0.05855 |
| 2.5 | 0.01512 | 0.02126 | 0.01080 | 0.01160 |
| 3.0 | 0.00773 | 0.01088 | 0.00554 | 0.00548 |
| 3.5 | 0.00400 | 0.00565 | 0.00285 | 0.00465 |
| 4.0 | 0.00211 | 0.00301 | 0.00149 | 0.00152 |
| 4.5 | 0.00118 | 0.00172 | 0.00082 | 0.00128 |
| 5.0 | 0.00073 | 0.00108 | 0.00050 | 0.00161 |
| 6.0 | 0.00039 | 0.00060 | 0.00025 | 0.00036 |
| 7.0 | 0.00021 | 0.00034 | 0.00013 | 0.00045 |
| 1.6 | 0.067 | 0.095 | 0.047 | 0.095 |
| 1.8 | 0.044 | 0.063 | 0.032 | 0.048 |
| 2.0 | 0.032 | 0.045 | 0.023 | 0.045 |
| 2.5 | 0.012 | 0.017 | 0.0088 | 0.013 |
| 3.0 | 0.0064 | 0.009 | 0.0046 | 0.0032 |
| 3.5 | 0.0036 | 0.0051 | 0.0026 | 0.0039 |
| 4.0 | 0.0021 | 0.0029 | 0.0015 | 0.0027 |
| 4.5 | 0.0013 | 0.0018 | 0.00088 | 0.00094 |
| 5.0 | 0.00083 | 0.0012 | 0.00057 | 0.00150 |
| 6.0 | 0.00046 | 0.00072 | 0.00031 | 0.00043 |
| 7.0 | 0.00023 | 0.00037 | 0.00015 | 0.00049 |
\newpage
\section*{Erklärung}
Hiermit bestätige ich, dass die vorliegende Bachelorarbeit von mir selbstständig verfasst wurde und ich keine anderen
als die angegebenen Hilfsmittel - insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen - benutzt
habe. Die Arbeit wurde bisher weder gesamt noch in Teilen einer anderen Prüfungsbehörde vorgelegt. Die eingereichte
schriftliche Fassung entspricht der auf dem elekronischen Speichermedium. Ich bin damit einverstanden, dass die
Bachelorarbeit veröffentlicht wird.
\vspace{5cm}
\parbox{5cm}{\hrule
\strut \footnotesize Ort, Datum} \hspace{1cm}\parbox{5cm}{\hrule
\strut \footnotesize David Leppla-Weber}

View File

@ -1,3 +1,4 @@
\newpage
\appendix
\hypertarget{expected-and-observed-cross-section-limits}{%
@ -17,17 +18,18 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.10406 & 0.14720 & 0.07371 & 0.08165\tabularnewline
1.8 & 0.07656 & 0.10800 & 0.05441 & 0.04114\tabularnewline
2.0 & 0.05422 & 0.07605 & 0.03879 & 0.04043\tabularnewline
2.5 & 0.02430 & 0.03408 & 0.01747 & 0.04052\tabularnewline
3.0 & 0.01262 & 0.01775 & 0.00904 & 0.02109\tabularnewline
3.5 & 0.00703 & 0.00992 & 0.00502 & 0.00399\tabularnewline
4.0 & 0.00424 & 0.00603 & 0.00300 & 0.00172\tabularnewline
4.5 & 0.00355 & 0.00478 & 0.00273 & 0.00249\tabularnewline
5.0 & 0.00269 & 0.00357 & 0.00211 & 0.00240\tabularnewline
6.0 & 0.00103 & 0.00160 & 0.00068 & 0.00062\tabularnewline
7.0 & 0.00063 & 0.00105 & 0.00039 & 0.00086\tabularnewline
1.6 & 0.10 & 0.15 & 0.074 & 0.082\tabularnewline
1.8 & 0.077 & 0.11 & 0.054 & 0.041\tabularnewline
2.0 & 0.054 & 0.076 & 0.039 & 0.040\tabularnewline
2.5 & 0.024 & 0.034 & 0.017 & 0.041\tabularnewline
3.0 & 0.013 & 0.018 & 0.009 & 0.021\tabularnewline
3.5 & 0.0070 & 0.0099 & 0.005 & 0.004\tabularnewline
4.0 & 0.0042 & 0.0060 & 0.003 & 0.0017\tabularnewline
4.0 & 0.0042 & 0.0060 & 0.003 & 0.0017\tabularnewline
4.5 & 0.0035 & 0.0048 & 0.0027 & 0.0025\tabularnewline
5.0 & 0.0027 & 0.0036 & 0.0021 & 0.0024\tabularnewline
6.0 & 0.0010 & 0.0016 & 0.00068 & 0.00062\tabularnewline
7.0 & 0.00063 & 0.0010 & 0.00039 & 0.00086\tabularnewline
\bottomrule
\end{longtable}
@ -44,17 +46,17 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.17750 & 0.25179 & 0.12572 & 0.38242\tabularnewline
1.8 & 0.11125 & 0.15870 & 0.07826 & 0.11692\tabularnewline
2.0 & 0.08188 & 0.11549 & 0.05799 & 0.09528\tabularnewline
2.5 & 0.03328 & 0.04668 & 0.02373 & 0.03653\tabularnewline
3.0 & 0.01648 & 0.02338 & 0.01181 & 0.01108\tabularnewline
3.5 & 0.00840 & 0.01195 & 0.00593 & 0.00683\tabularnewline
4.0 & 0.00459 & 0.00666 & 0.00322 & 0.00342\tabularnewline
4.5 & 0.00276 & 0.00412 & 0.00190 & 0.00366\tabularnewline
5.0 & 0.00177 & 0.00271 & 0.00118 & 0.00401\tabularnewline
6.0 & 0.00110 & 0.00175 & 0.00071 & 0.00155\tabularnewline
7.0 & 0.00065 & 0.00108 & 0.00041 & 0.00108\tabularnewline
1.6 & 0.18 & 0.25 & 0.13 & 0.38\tabularnewline
1.8 & 0.11 & 0.16 & 0.078 & 0.12\tabularnewline
2.0 & 0.082 & 0.12 & 0.058 & 0.095\tabularnewline
2.5 & 0.033 & 0.047 & 0.024 & 0.037\tabularnewline
3.0 & 0.016 & 0.023 & 0.012 & 0.011\tabularnewline
3.5 & 0.0084 & 0.012 & 0.0059 & 0.0068\tabularnewline
4.0 & 0.0046 & 0.0067 & 0.0032 & 0.0034\tabularnewline
4.5 & 0.0028 & 0.0041 & 0.0019 & 0.0037\tabularnewline
5.0 & 0.0018 & 0.0027 & 0.0012 & 0.0040\tabularnewline
6.0 & 0.0011 & 0.0017 & 0.00071 & 0.0016\tabularnewline
7.0 & 0.00065 & 0.0011 & 0.00041 & 0.0011\tabularnewline
\bottomrule
\end{longtable}
@ -71,16 +73,16 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.08687 & 0.12254 & 0.06174 & 0.06987\tabularnewline
1.8 & 0.06719 & 0.09477 & 0.04832 & 0.03424\tabularnewline
2.0 & 0.04734 & 0.06640 & 0.03405 & 0.03310\tabularnewline
2.5 & 0.01867 & 0.02619 & 0.01343 & 0.03214\tabularnewline
3.0 & 0.01043 & 0.01463 & 0.00744 & 0.01773\tabularnewline
3.5 & 0.00596 & 0.00840 & 0.00426 & 0.00347\tabularnewline
4.0 & 0.00353 & 0.00500 & 0.00250 & 0.00140\tabularnewline
4.5 & 0.00233 & 0.00335 & 0.00164 & 0.00181\tabularnewline
5.0 & 0.00157 & 0.00231 & 0.00110 & 0.00188\tabularnewline
6.0 & 0.00082 & 0.00126 & 0.00054 & 0.00049\tabularnewline
1.6 & 0.087 & 0.12 & 0.062 & 0.07\tabularnewline
1.8 & 0.067 & 0.095 & 0.048 & 0.034\tabularnewline
2.0 & 0.047 & 0.066 & 0.034 & 0.033\tabularnewline
2.5 & 0.019 & 0.026 & 0.013 & 0.032\tabularnewline
3.0 & 0.010 & 0.015 & 0.0074 & 0.018\tabularnewline
3.5 & 0.0060 & 0.0084 & 0.0043 & 0.0035\tabularnewline
4.0 & 0.0035 & 0.0050 & 0.0025 & 0.0014\tabularnewline
4.5 & 0.0023 & 0.0034 & 0.0016 & 0.0018\tabularnewline
5.0 & 0.0016 & 0.0023 & 0.0011 & 0.0019\tabularnewline
6.0 & 0.00082 & 0.0013 & 0.00054 & 0.00049\tabularnewline
7.0 & 0.00050 & 0.00083 & 0.00031 & 0.00066\tabularnewline
\bottomrule
\end{longtable}
@ -98,17 +100,17 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.16687 & 0.23805 & 0.11699 & 0.35999\tabularnewline
1.8 & 0.12750 & 0.17934 & 0.09138 & 0.12891\tabularnewline
2.0 & 0.09062 & 0.12783 & 0.06474 & 0.09977\tabularnewline
2.5 & 0.03391 & 0.04783 & 0.02422 & 0.03754\tabularnewline
3.0 & 0.01781 & 0.02513 & 0.01277 & 0.01159\tabularnewline
3.5 & 0.00949 & 0.01346 & 0.00678 & 0.00741\tabularnewline
4.0 & 0.00494 & 0.00711 & 0.00349 & 0.00362\tabularnewline
4.5 & 0.00293 & 0.00429 & 0.00203 & 0.00368\tabularnewline
5.0 & 0.00188 & 0.00284 & 0.00127 & 0.00426\tabularnewline
6.0 & 0.00102 & 0.00161 & 0.00066 & 0.00155\tabularnewline
7.0 & 0.00053 & 0.00085 & 0.00034 & 0.00085\tabularnewline
1.6 & 0.15 & 0.22 & 0.11 & 0.33\tabularnewline
1.8 & 0.10 & 0.14 & 0.072 & 0.085\tabularnewline
2.0 & 0.077 & 0.11 & 0.056 & 0.064\tabularnewline
2.5 & 0.027 & 0.038 & 0.019 & 0.041\tabularnewline
3.0 & 0.015 & 0.021 & 0.010 & 0.0087\tabularnewline
3.5 & 0.0084 & 0.012 & 0.006 & 0.0066\tabularnewline
4.0 & 0.0049 & 0.0071 & 0.0035 & 0.0045\tabularnewline
4.5 & 0.0032 & 0.0046 & 0.0022 & 0.0026\tabularnewline
5.0 & 0.0022 & 0.0033 & 0.0015 & 0.0041\tabularnewline
6.0 & 0.0012 & 0.0019 & 0.00081 & 0.0018\tabularnewline
7.0 & 0.00057 & 0.00092 & 0.00037 & 0.00093\tabularnewline
\bottomrule
\end{longtable}
@ -125,15 +127,15 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.05703 & 0.07999 & 0.04088 & 0.03366\tabularnewline
1.8 & 0.03953 & 0.05576 & 0.02833 & 0.04319\tabularnewline
2.0 & 0.02844 & 0.03989 & 0.02045 & 0.04755\tabularnewline
2.5 & 0.01270 & 0.01781 & 0.00913 & 0.01519\tabularnewline
3.0 & 0.00658 & 0.00923 & 0.00473 & 0.01218\tabularnewline
3.5 & 0.00376 & 0.00529 & 0.00269 & 0.00474\tabularnewline
4.0 & 0.00218 & 0.00309 & 0.00156 & 0.00114\tabularnewline
4.5 & 0.00132 & 0.00188 & 0.00094 & 0.00068\tabularnewline
5.0 & 0.00084 & 0.00122 & 0.00060 & 0.00059\tabularnewline
1.6 & 0.057 & 0.08 & 0.041 & 0.034\tabularnewline
1.8 & 0.040 & 0.056 & 0.028 & 0.043\tabularnewline
2.0 & 0.028 & 0.040 & 0.020 & 0.048\tabularnewline
2.5 & 0.013 & 0.018 & 0.0091 & 0.015\tabularnewline
3.0 & 0.0066 & 0.0092 & 0.0047 & 0.012\tabularnewline
3.5 & 0.0038 & 0.0053 & 0.0027 & 0.0047\tabularnewline
4.0 & 0.0022 & 0.0031 & 0.0016 & 0.0011\tabularnewline
4.5 & 0.0013 & 0.0019 & 0.00094 & 0.00068\tabularnewline
5.0 & 0.00084 & 0.0012 & 0.00060 & 0.00059\tabularnewline
6.0 & 0.00044 & 0.00066 & 0.00030 & 0.00041\tabularnewline
7.0 & 0.00022 & 0.00036 & 0.00014 & 0.00043\tabularnewline
\bottomrule
@ -152,15 +154,15 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.06656 & 0.09495 & 0.04698 & 0.12374\tabularnewline
1.8 & 0.04281 & 0.06141 & 0.03001 & 0.05422\tabularnewline
2.0 & 0.03297 & 0.04650 & 0.02363 & 0.04658\tabularnewline
2.5 & 0.01328 & 0.01868 & 0.00950 & 0.01109\tabularnewline
3.0 & 0.00650 & 0.00917 & 0.00464 & 0.00502\tabularnewline
3.5 & 0.00338 & 0.00479 & 0.00241 & 0.00408\tabularnewline
4.0 & 0.00182 & 0.00261 & 0.00129 & 0.00127\tabularnewline
4.5 & 0.00107 & 0.00156 & 0.00074 & 0.00123\tabularnewline
5.0 & 0.00068 & 0.00102 & 0.00046 & 0.00149\tabularnewline
1.6 & 0.067 & 0.095 & 0.047 & 0.12\tabularnewline
1.8 & 0.043 & 0.061 & 0.030 & 0.054\tabularnewline
2.0 & 0.033 & 0.047 & 0.024 & 0.047\tabularnewline
2.5 & 0.013 & 0.019 & 0.0095 & 0.011\tabularnewline
3.0 & 0.0065 & 0.0092 & 0.0046 & 0.0050\tabularnewline
3.5 & 0.0034 & 0.0048 & 0.0024 & 0.0041\tabularnewline
4.0 & 0.0018 & 0.0026 & 0.0013 & 0.0013\tabularnewline
4.5 & 0.0011 & 0.0016 & 0.00074 & 0.0012\tabularnewline
5.0 & 0.00068 & 0.0010 & 0.00046 & 0.0015\tabularnewline
6.0 & 0.00038 & 0.00060 & 0.00024 & 0.00034\tabularnewline
7.0 & 0.00021 & 0.00035 & 0.00013 & 0.00046\tabularnewline
\bottomrule
@ -179,15 +181,15 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.05125 & 0.07188 & 0.03667 & 0.02993\tabularnewline
1.8 & 0.03547 & 0.04989 & 0.02551 & 0.03614\tabularnewline
2.0 & 0.02523 & 0.03539 & 0.01815 & 0.04177\tabularnewline
2.5 & 0.01059 & 0.01485 & 0.00761 & 0.01230\tabularnewline
3.0 & 0.00576 & 0.00808 & 0.00412 & 0.01087\tabularnewline
3.5 & 0.00327 & 0.00460 & 0.00234 & 0.00425\tabularnewline
4.0 & 0.00190 & 0.00269 & 0.00136 & 0.00097\tabularnewline
4.5 & 0.00119 & 0.00168 & 0.00084 & 0.00059\tabularnewline
5.0 & 0.00077 & 0.00110 & 0.00054 & 0.00051\tabularnewline
1.6 & 0.051 & 0.072 & 0.037 & 0.030\tabularnewline
1.8 & 0.035 & 0.050 & 0.026 & 0.036\tabularnewline
2.0 & 0.025 & 0.035 & 0.018 & 0.042\tabularnewline
2.5 & 0.011 & 0.015 & 0.0076 & 0.012\tabularnewline
3.0 & 0.0058 & 0.0081 & 0.0041 & 0.011\tabularnewline
3.5 & 0.0033 & 0.0046 & 0.0023 & 0.0042\tabularnewline
4.0 & 0.0019 & 0.0027 & 0.0014 & 0.00097\tabularnewline
4.5 & 0.0012 & 0.0017 & 0.00084 & 0.00059\tabularnewline
5.0 & 0.00077 & 0.0011 & 0.00054 & 0.00051\tabularnewline
6.0 & 0.00039 & 0.00057 & 0.00026 & 0.00036\tabularnewline
7.0 & 0.00019 & 0.00031 & 0.00013 & 0.00036\tabularnewline
\bottomrule
@ -206,16 +208,34 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.07719 & 0.10949 & 0.05467 & 0.14090\tabularnewline
1.8 & 0.05297 & 0.07493 & 0.03752 & 0.06690\tabularnewline
2.0 & 0.03875 & 0.05466 & 0.02768 & 0.05855\tabularnewline
2.5 & 0.01512 & 0.02126 & 0.01080 & 0.01160\tabularnewline
3.0 & 0.00773 & 0.01088 & 0.00554 & 0.00548\tabularnewline
3.5 & 0.00400 & 0.00565 & 0.00285 & 0.00465\tabularnewline
4.0 & 0.00211 & 0.00301 & 0.00149 & 0.00152\tabularnewline
4.5 & 0.00118 & 0.00172 & 0.00082 & 0.00128\tabularnewline
5.0 & 0.00073 & 0.00108 & 0.00050 & 0.00161\tabularnewline
6.0 & 0.00039 & 0.00060 & 0.00025 & 0.00036\tabularnewline
7.0 & 0.00021 & 0.00034 & 0.00013 & 0.00045\tabularnewline
1.6 & 0.067 & 0.095 & 0.047 & 0.095\tabularnewline
1.8 & 0.044 & 0.063 & 0.032 & 0.048\tabularnewline
2.0 & 0.032 & 0.045 & 0.023 & 0.045\tabularnewline
2.5 & 0.012 & 0.017 & 0.0088 & 0.013\tabularnewline
3.0 & 0.0064 & 0.009 & 0.0046 & 0.0032\tabularnewline
3.5 & 0.0036 & 0.0051 & 0.0026 & 0.0039\tabularnewline
4.0 & 0.0021 & 0.0029 & 0.0015 & 0.0027\tabularnewline
4.5 & 0.0013 & 0.0018 & 0.00088 & 0.00094\tabularnewline
5.0 & 0.00083 & 0.0012 & 0.00057 & 0.00150\tabularnewline
6.0 & 0.00046 & 0.00072 & 0.00031 & 0.00043\tabularnewline
7.0 & 0.00023 & 0.00037 & 0.00015 & 0.00049\tabularnewline
\bottomrule
\end{longtable}
\newpage
\section*{Erklärung}
Hiermit bestätige ich, dass die vorliegende Bachelorarbeit von mir
selbstständig verfasst wurde und ich keine anderen als die angegebenen
Hilfsmittel - insbesondere keine im Quellenverzeichnis nicht benannten
Internet-Quellen - benutzt habe. Die Arbeit wurde bisher weder gesamt
noch in Teilen einer anderen Prüfungsbehörde vorgelegt. Die eingereichte
schriftliche Fassung entspricht der auf dem elekronischen
Speichermedium. Ich bin damit einverstanden, dass die Bachelorarbeit
veröffentlicht wird.
\vspace{5cm}
\parbox{5cm}{\hrule
\strut \footnotesize Ort, Datum} \hspace{1cm}\parbox{5cm}{\hrule
\strut \footnotesize David Leppla-Weber}

View File

@ -1649,3 +1649,53 @@ archivePrefix = {arXiv},
reportNumber = "CMS-NOTE-2005-001, CERN-CMS-NOTE-2005-001",
SLACcitation = "%%CITATION = CMS-NOTE-2005-001;%%"
}
@online{CMS_LUMI,
title={CMS Luminosity - Public Results},
intitution={CERN},
collaboration={CMS Collaboration},
year={2019},
url={https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults},
note={Online; accessed Oct. 2019}
}
@misc{MADGRAPH,
title={The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations},
author={J. Alwall and R. Frederix and S. Frixione and V. Hirschi and F. Maltoni and O. Mattelaer and H. -S. Shao and T. Stelzer and P. Torrielli and M. Zaro},
year={2014},
eprint={1405.0301},
archivePrefix={arXiv},
primaryClass={hep-ph}
}
@misc{PYTHIA8,
title={An Introduction to PYTHIA 8.2},
author={Torbjörn Sjöstrand and Stefan Ask and Jesper R. Christiansen and Richard Corke and Nishita Desai and Philip Ilten and Stephen Mrenna and Stefan Prestel and Christine O. Rasmussen and Peter Z. Skands},
year={2014},
eprint={1410.3012},
archivePrefix={arXiv},
primaryClass={hep-ph}
}
@online{CLT,
title={Central limit theorem},
author={Encyclopedia of Mathematics},
year={2012},
url={http://www.encyclopediaofmath.org/index.php?title=Central_limit_theorem&oldid=26376},
note={Online; accessed Oct. 2019}
}
@techreport{LUMI_UNC,
title = "{CMS Luminosity Measurements for the 2016 Data Taking
Period}",
institution = "CERN",
collaboration = "CMS Collaboration",
address = "Geneva",
number = "CMS-PAS-LUM-17-001",
year = "2017",
reportNumber = "CMS-PAS-LUM-17-001",
url = "https://cds.cern.ch/record/2257069",
}
@online{JEC,
title={Recommended Jet Energy Corrections and Uncertainties For Data and MC},
year={2019},
intitution={CERN},
collaboration={CMS Collaboration},
url={https://twiki.cern.ch/twiki/bin/viewauth/CMS/JECDataMC},
note={Online; accessed Oct. 2019}
}

View File

@ -1,5 +1,5 @@
#!/bin/sh
rm -f thesis.aux thesis.bcf thesis.blg thesis.log thesis.run.xml thesis.tex thesis.toc
rm -f thesis.aux thesis.bcf thesis.blg thesis.log thesis.run.xml thesis.tex thesis.toc thesis.bbl
pandoc thesis.md -o thesis.tex --biblatex --bibliography=bibliography.bib -N --listings --pdf-engine=lualatex -s --filter pandoc-crossref --include-after-body=appendix.tex
lualatex thesis
biber thesis

View File

@ -37,15 +37,15 @@
\newlabel{theoretical-motivation}{{2}{2}{Theoretical motivation}{section.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Standard Model}{2}{subsection.2.1}\protected@file@percent }
\newlabel{sec:sm}{{2.1}{2}{Standard Model}{subsection.2.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Elementary particles of the Standard Model and their mass charge and spin. Taken from \autocite {SM}\relax }}{2}{figure.caption.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Elementary particles of the Standard Model and their mass charge and spin \autocite {SM}.\relax }}{2}{figure.caption.2}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:sm}{{1}{2}{Elementary particles of the Standard Model and their mass charge and spin. Taken from \autocite {SM}\relax }{figure.caption.2}{}}
\newlabel{fig:sm}{{1}{2}{Elementary particles of the Standard Model and their mass charge and spin \autocite {SM}.\relax }{figure.caption.2}{}}
\abx@aux@cite{HADRONIZATION}
\abx@aux@segm{0}{0}{HADRONIZATION}
\BKM@entry{id=4,dest={73756273756273656374696F6E2E322E312E31},srcline={361},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030535C303030685C3030306F5C303030725C303030745C303030635C3030306F5C3030306D5C303030695C3030306E5C303030675C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030685C303030655C3030305C3034305C303030535C303030745C303030615C3030306E5C303030645C303030615C303030725C303030645C3030305C3034305C3030304D5C3030306F5C303030645C303030655C3030306C}
\BKM@entry{id=4,dest={73756273756273656374696F6E2E322E312E31},srcline={360},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030535C303030685C3030306F5C303030725C303030745C303030635C3030306F5C3030306D5C303030695C3030306E5C303030675C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030685C303030655C3030305C3034305C303030535C303030745C303030615C3030306E5C303030645C303030615C303030725C303030645C3030305C3034305C3030304D5C3030306F5C303030645C303030655C3030306C}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.1.1}Shortcomings of the Standard Model}{3}{subsubsection.2.1.1}\protected@file@percent }
\newlabel{shortcomings-of-the-standard-model}{{2.1.1}{3}{Shortcomings of the Standard Model}{subsubsection.2.1.1}{}}
\BKM@entry{id=5,dest={73756273656374696F6E2E322E32},srcline={394},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030455C303030785C303030635C303030695C303030745C303030655C303030645C3030305C3034305C303030715C303030755C303030615C303030725C3030306B5C3030305C3034305C303030735C303030745C303030615C303030745C303030655C30303073}
\BKM@entry{id=5,dest={73756273656374696F6E2E322E32},srcline={393},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030455C303030785C303030635C303030695C303030745C303030655C303030645C3030305C3034305C303030715C303030755C303030615C303030725C3030306B5C3030305C3034305C303030735C303030745C303030615C303030745C303030655C30303073}
\abx@aux@cite{QSTAR_THEORY}
\abx@aux@segm{0}{0}{QSTAR_THEORY}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Excited quark states}{4}{subsection.2.2}\protected@file@percent }
@ -59,17 +59,19 @@
{1}{69.63869pt}\LT@entry
{1}{65.97462pt}}
\abx@aux@segm{0}{0}{PREV_RESEARCH}
\BKM@entry{id=6,dest={73756273756273656374696F6E2E322E322E31},srcline={485},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030515C303030755C303030615C3030306E5C303030745C303030755C3030306D5C3030305C3034305C303030435C303030685C303030725C3030306F5C3030306D5C3030306F5C303030645C303030795C3030306E5C303030615C3030306D5C303030695C303030635C3030305C3034305C303030625C303030615C303030635C3030306B5C303030675C303030725C3030306F5C303030755C3030306E5C30303064}
\BKM@entry{id=6,dest={73756273756273656374696F6E2E322E322E31},srcline={484},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030515C303030755C303030615C3030306E5C303030745C303030755C3030306D5C3030305C3034305C303030435C303030685C303030725C3030306F5C3030306D5C3030306F5C303030645C303030795C3030306E5C303030615C3030306D5C303030695C303030635C3030305C3034305C303030625C303030615C303030635C3030306B5C303030675C303030725C3030306F5C303030755C3030306E5C30303064}
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Branching ratios of the decaying q* particle.\relax }}{5}{table.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.1}Quantum Chromodynamic background}{5}{subsubsection.2.2.1}\protected@file@percent }
\newlabel{sec:qcdbg}{{2.2.1}{5}{Quantum Chromodynamic background}{subsubsection.2.2.1}{}}
\BKM@entry{id=7,dest={73656374696F6E2E33},srcline={517},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030455C303030785C303030705C303030655C303030725C303030695C3030306D5C303030655C3030306E5C303030745C303030615C3030306C5C3030305C3034305C303030535C303030655C303030745C303030755C30303070}
\BKM@entry{id=8,dest={73756273656374696F6E2E332E31},srcline={523},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C3030304C5C303030615C303030725C303030675C303030655C3030305C3034305C303030485C303030615C303030645C303030725C3030306F5C3030306E5C3030305C3034305C303030435C3030306F5C3030306C5C3030306C5C303030695C303030645C303030655C30303072}
\BKM@entry{id=7,dest={73656374696F6E2E33},srcline={516},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030455C303030785C303030705C303030655C303030725C303030695C3030306D5C303030655C3030306E5C303030745C303030615C3030306C5C3030305C3034305C303030535C303030655C303030745C303030755C30303070}
\BKM@entry{id=8,dest={73756273656374696F6E2E332E31},srcline={522},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C3030304C5C303030615C303030725C303030675C303030655C3030305C3034305C303030485C303030615C303030645C303030725C3030306F5C3030306E5C3030305C3034305C303030435C3030306F5C3030306C5C3030306C5C303030695C303030645C303030655C30303072}
\abx@aux@cite{LHC_MACHINE}
\abx@aux@segm{0}{0}{LHC_MACHINE}
\BKM@entry{id=9,dest={73756273656374696F6E2E332E32},srcline={552},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030435C3030306F5C3030306D5C303030705C303030615C303030635C303030745C3030305C3034305C3030304D5C303030755C3030306F5C3030306E5C3030305C3034305C303030535C3030306F5C3030306C5C303030655C3030306E5C3030306F5C303030695C30303064}
\BKM@entry{id=9,dest={73756273656374696F6E2E332E32},srcline={551},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030435C3030306F5C3030306D5C303030705C303030615C303030635C303030745C3030305C3034305C3030304D5C303030755C3030306F5C3030306E5C3030305C3034305C303030535C3030306F5C3030306C5C303030655C3030306E5C3030306F5C303030695C30303064}
\abx@aux@cite{CMS_REPORT}
\abx@aux@segm{0}{0}{CMS_REPORT}
\abx@aux@cite{CMS_LUMI}
\abx@aux@segm{0}{0}{CMS_LUMI}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Two examples of QCD processes resulting in two jets.\relax }}{6}{figure.caption.4}\protected@file@percent }
\newlabel{fig:qcdfeynman}{{3}{6}{Two examples of QCD processes resulting in two jets.\relax }{figure.caption.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3}Experimental Setup}{6}{section.3}\protected@file@percent }
@ -81,38 +83,38 @@
\abx@aux@cite{CMS_PLOT}
\abx@aux@segm{0}{0}{CMS_PLOT}
\abx@aux@segm{0}{0}{CMS_PLOT}
\BKM@entry{id=10,dest={73756273756273656374696F6E2E332E322E31},srcline={583},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030435C3030306F5C3030306F5C303030725C303030645C303030695C3030306E5C303030615C303030745C303030655C3030305C3034305C303030635C3030306F5C3030306E5C303030765C303030655C3030306E5C303030745C303030695C3030306F5C3030306E5C30303073}
\BKM@entry{id=10,dest={73756273756273656374696F6E2E332E322E31},srcline={582},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030435C3030306F5C3030306F5C303030725C303030645C303030695C3030306E5C303030615C303030745C303030655C3030305C3034305C303030635C3030306F5C3030306E5C303030765C303030655C3030306E5C303030745C303030695C3030306F5C3030306E5C30303073}
\abx@aux@cite{COORD_PLOT}
\abx@aux@segm{0}{0}{COORD_PLOT}
\abx@aux@segm{0}{0}{COORD_PLOT}
\BKM@entry{id=11,dest={73756273756273656374696F6E2E332E322E32},srcline={612},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030745C303030725C303030615C303030635C3030306B5C303030695C3030306E5C303030675C3030305C3034305C303030735C303030795C303030735C303030745C303030655C3030306D}
\BKM@entry{id=11,dest={73756273756273656374696F6E2E332E322E32},srcline={611},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030745C303030725C303030615C303030635C3030306B5C303030695C3030306E5C303030675C3030305C3034305C303030735C303030795C303030735C303030745C303030655C3030306D}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces The setup of the Compact Muon Solenoid showing its onion like structure, the different detector parts and where different particles are detected \autocite {CMS_PLOT}.\relax }}{7}{figure.caption.5}\protected@file@percent }
\newlabel{fig:cms_setup}{{4}{7}{The setup of the Compact Muon Solenoid showing its onion like structure, the different detector parts and where different particles are detected \autocite {CMS_PLOT}.\relax }{figure.caption.5}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.1}Coordinate conventions}{7}{subsubsection.3.2.1}\protected@file@percent }
\newlabel{coordinate-conventions}{{3.2.1}{7}{Coordinate conventions}{subsubsection.3.2.1}{}}
\BKM@entry{id=12,dest={73756273756273656374696F6E2E332E322E33},srcline={622},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030655C3030306C5C303030655C303030635C303030745C303030725C3030306F5C3030306D5C303030615C303030675C3030306E5C303030655C303030745C303030695C303030635C3030305C3034305C303030635C303030615C3030306C5C3030306F5C303030725C303030695C3030306D5C303030655C303030745C303030655C30303072}
\BKM@entry{id=13,dest={73756273756273656374696F6E2E332E322E34},srcline={636},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030685C303030615C303030645C303030725C3030306F5C3030306E5C303030695C303030635C3030305C3034305C303030635C303030615C3030306C5C3030306F5C303030725C303030695C3030306D5C303030655C303030745C303030655C30303072}
\BKM@entry{id=14,dest={73756273756273656374696F6E2E332E322E35},srcline={645},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030735C3030306F5C3030306C5C303030655C3030306E5C3030306F5C303030695C30303064}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Coordinate conventions of the CMS illustrating the use of \(\miteta \) and \(\mitphi \). The Z axis is in beam direction. Taken from \autocite {COORD_PLOT}\relax }}{8}{figure.caption.6}\protected@file@percent }
\newlabel{fig:cmscoords}{{5}{8}{Coordinate conventions of the CMS illustrating the use of \(\eta \) and \(\phi \). The Z axis is in beam direction. Taken from \autocite {COORD_PLOT}\relax }{figure.caption.6}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2}The tracking system}{8}{subsubsection.3.2.2}\protected@file@percent }
\newlabel{the-tracking-system}{{3.2.2}{8}{The tracking system}{subsubsection.3.2.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2}The tracking system}{7}{subsubsection.3.2.2}\protected@file@percent }
\newlabel{the-tracking-system}{{3.2.2}{7}{The tracking system}{subsubsection.3.2.2}{}}
\BKM@entry{id=12,dest={73756273756273656374696F6E2E332E322E33},srcline={621},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030655C3030306C5C303030655C303030635C303030745C303030725C3030306F5C3030306D5C303030615C303030675C3030306E5C303030655C303030745C303030695C303030635C3030305C3034305C303030635C303030615C3030306C5C3030306F5C303030725C303030695C3030306D5C303030655C303030745C303030655C30303072}
\BKM@entry{id=13,dest={73756273756273656374696F6E2E332E322E34},srcline={635},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030685C303030615C303030645C303030725C3030306F5C3030306E5C303030695C303030635C3030305C3034305C303030635C303030615C3030306C5C3030306F5C303030725C303030695C3030306D5C303030655C303030745C303030655C30303072}
\BKM@entry{id=14,dest={73756273756273656374696F6E2E332E322E35},srcline={644},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030735C3030306F5C3030306C5C303030655C3030306E5C3030306F5C303030695C30303064}
\BKM@entry{id=15,dest={73756273756273656374696F6E2E332E322E36},srcline={652},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C3030306D5C303030755C3030306F5C3030306E5C3030305C3034305C303030735C303030795C303030735C303030745C303030655C3030306D}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Coordinate conventions of the CMS illustrating the use of \(\miteta \) and \(\mitphi \). The Z axis is in beam direction \autocite {COORD_PLOT}.\relax }}{8}{figure.caption.6}\protected@file@percent }
\newlabel{fig:cmscoords}{{5}{8}{Coordinate conventions of the CMS illustrating the use of \(\eta \) and \(\phi \). The Z axis is in beam direction \autocite {COORD_PLOT}.\relax }{figure.caption.6}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.3}The electromagnetic calorimeter}{8}{subsubsection.3.2.3}\protected@file@percent }
\newlabel{the-electromagnetic-calorimeter}{{3.2.3}{8}{The electromagnetic calorimeter}{subsubsection.3.2.3}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.4}The hadronic calorimeter}{8}{subsubsection.3.2.4}\protected@file@percent }
\newlabel{the-hadronic-calorimeter}{{3.2.4}{8}{The hadronic calorimeter}{subsubsection.3.2.4}{}}
\BKM@entry{id=15,dest={73756273756273656374696F6E2E332E322E36},srcline={653},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C3030306D5C303030755C3030306F5C3030306E5C3030305C3034305C303030735C303030795C303030735C303030745C303030655C3030306D}
\BKM@entry{id=16,dest={73756273756273656374696F6E2E332E322E37},srcline={663},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030545C303030725C303030695C303030675C303030675C303030655C303030725C3030305C3034305C303030735C303030795C303030735C303030745C303030655C3030306D}
\BKM@entry{id=17,dest={73756273756273656374696F6E2E332E322E38},srcline={677},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030505C303030615C303030725C303030745C303030695C303030635C3030306C5C303030655C3030305C3034305C303030465C3030306C5C3030306F5C303030775C3030305C3034305C303030615C3030306C5C303030675C3030306F5C303030725C303030695C303030745C303030685C3030306D}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.5}The solenoid}{8}{subsubsection.3.2.5}\protected@file@percent }
\newlabel{the-solenoid}{{3.2.5}{8}{The solenoid}{subsubsection.3.2.5}{}}
\BKM@entry{id=16,dest={73756273756273656374696F6E2E332E322E37},srcline={662},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030545C303030725C303030695C303030675C303030675C303030655C303030725C3030305C3034305C303030735C303030795C303030735C303030745C303030655C3030306D}
\BKM@entry{id=17,dest={73756273756273656374696F6E2E332E322E38},srcline={676},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030545C303030685C303030655C3030305C3034305C303030505C303030615C303030725C303030745C303030695C303030635C3030306C5C303030655C3030305C3034305C303030465C3030306C5C3030306F5C303030775C3030305C3034305C303030615C3030306C5C303030675C3030306F5C303030725C303030695C303030745C303030685C3030306D}
\abx@aux@cite{PARTICLE_FLOW}
\abx@aux@segm{0}{0}{PARTICLE_FLOW}
\abx@aux@cite{ERECO}
\abx@aux@segm{0}{0}{ERECO}
\BKM@entry{id=18,dest={73756273656374696F6E2E332E33},srcline={698},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C3030304A5C303030655C303030745C3030305C3034305C303030635C3030306C5C303030755C303030735C303030745C303030655C303030725C303030695C3030306E5C30303067}
\BKM@entry{id=18,dest={73756273656374696F6E2E332E33},srcline={697},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C3030304A5C303030655C303030745C3030305C3034305C303030635C3030306C5C303030755C303030735C303030745C303030655C303030725C303030695C3030306E5C30303067}
\abx@aux@cite{ANTIKT}
\abx@aux@segm{0}{0}{ANTIKT}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.5}The solenoid}{9}{subsubsection.3.2.5}\protected@file@percent }
\newlabel{the-solenoid}{{3.2.5}{9}{The solenoid}{subsubsection.3.2.5}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.6}The muon system}{9}{subsubsection.3.2.6}\protected@file@percent }
\newlabel{the-muon-system}{{3.2.6}{9}{The muon system}{subsubsection.3.2.6}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.7}The Trigger system}{9}{subsubsection.3.2.7}\protected@file@percent }
@ -125,15 +127,20 @@
\abx@aux@segm{0}{0}{ANTIKT}
\abx@aux@cite{SDM}
\abx@aux@segm{0}{0}{SDM}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Comparison of the \(k_t\), Cambridge/Aachen, SISCone and anti-\(k_t\) algorithms clustering a sample parton-level event with many random soft \enquote {ghosts}. Taken from \autocite {ANTIKT}\relax }}{10}{figure.caption.7}\protected@file@percent }
\newlabel{fig:antiktcomparison}{{6}{10}{Comparison of the \(k_t\), Cambridge/Aachen, SISCone and anti-\(k_t\) algorithms clustering a sample parton-level event with many random soft \enquote {ghosts}. Taken from \autocite {ANTIKT}\relax }{figure.caption.7}{}}
\BKM@entry{id=19,dest={73656374696F6E2E34},srcline={740},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C3030304D5C303030655C303030745C303030685C3030306F5C303030645C3030305C3034305C3030306F5C303030665C3030305C3034305C303030615C3030306E5C303030615C3030306C5C303030795C303030735C303030695C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Comparison of the \(k_t\), Cambridge/Aachen, SISCone and anti-\(k_t\) algorithms clustering a sample parton-level event with many random soft \enquote {ghosts} \autocite {ANTIKT}.\relax }}{10}{figure.caption.7}\protected@file@percent }
\newlabel{fig:antiktcomparison}{{6}{10}{Comparison of the \(k_t\), Cambridge/Aachen, SISCone and anti-\(k_t\) algorithms clustering a sample parton-level event with many random soft \enquote {ghosts} \autocite {ANTIKT}.\relax }{figure.caption.7}{}}
\BKM@entry{id=19,dest={73656374696F6E2E34},srcline={739},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C3030304D5C303030655C303030745C303030685C3030306F5C303030645C3030305C3034305C3030306F5C303030665C3030305C3034305C303030615C3030306E5C303030615C3030306C5C303030795C303030735C303030695C30303073}
\abx@aux@segm{0}{0}{PREV_RESEARCH}
\abx@aux@segm{0}{0}{PREV_RESEARCH}
\BKM@entry{id=20,dest={73756273656374696F6E2E342E31},srcline={783},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030535C303030695C303030675C3030306E5C303030615C3030306C5C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030425C303030615C303030635C3030306B5C303030675C303030725C3030306F5C303030755C3030306E5C303030645C3030305C3034305C3030306D5C3030306F5C303030645C303030655C3030306C5C3030306C5C303030695C3030306E5C30303067}
\BKM@entry{id=20,dest={73756273656374696F6E2E342E31},srcline={782},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030535C303030695C303030675C3030306E5C303030615C3030306C5C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030425C303030615C303030635C3030306B5C303030675C303030725C3030306F5C303030755C3030306E5C303030645C3030305C3034305C3030306D5C3030306F5C303030645C303030655C3030306C5C3030306C5C303030695C3030306E5C30303067}
\abx@aux@cite{MONTECARLO}
\abx@aux@segm{0}{0}{MONTECARLO}
\abx@aux@cite{MADGRAPH}
\abx@aux@segm{0}{0}{MADGRAPH}
\abx@aux@cite{PYTHIA8}
\abx@aux@segm{0}{0}{PYTHIA8}
\abx@aux@segm{0}{0}{QSTAR_THEORY}
\abx@aux@segm{0}{0}{MADGRAPH}
\@writefile{toc}{\contentsline {section}{\numberline {4}Method of analysis}{11}{section.4}\protected@file@percent }
\newlabel{sec:moa}{{4}{11}{Method of analysis}{section.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Signal and Background modelling}{11}{subsection.4.1}\protected@file@percent }
@ -148,133 +155,136 @@
\newlabel{preselection}{{5.1}{13}{Preselection}{subsection.5.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Comparison of the number of jet distribution before and after the cut at number of jets $\ge $ 2. \newline Left: distribution before the cut. Right: distribution after the cut. \newline The signal curves are amplified by a factor of 10'000 to be visible.\relax }}{14}{figure.caption.9}\protected@file@percent }
\newlabel{fig:njets}{{8}{14}{Comparison of the number of jet distribution before and after the cut at number of jets $\ge $ 2. \newline Left: distribution before the cut. Right: distribution after the cut. \newline The signal curves are amplified by a factor of 10'000 to be visible.\relax }{figure.caption.9}{}}
\BKM@entry{id=23,dest={73756273656374696F6E2E352E32},srcline={1028},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030445C303030615C303030745C303030615C3030305C3034305C3030302D5C3030305C3034305C3030304D5C3030306F5C3030306E5C303030745C303030655C3030305C3034305C303030435C303030615C303030725C3030306C5C3030306F5C3030305C3034305C303030435C3030306F5C3030306D5C303030705C303030615C303030725C303030695C303030735C3030306F5C3030306E}
\BKM@entry{id=24,dest={73756273756273656374696F6E2E352E322E31},srcline={1079},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030535C303030695C303030645C303030655C303030625C303030615C3030306E5C30303064}
\BKM@entry{id=23,dest={73756273656374696F6E2E352E32},srcline={1030},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030445C303030615C303030745C303030615C3030305C3034305C3030302D5C3030305C3034305C3030304D5C3030306F5C3030306E5C303030745C303030655C3030305C3034305C303030435C303030615C303030725C3030306C5C3030306F5C3030305C3034305C303030435C3030306F5C3030306D5C303030705C303030615C303030725C303030695C303030735C3030306F5C3030306E}
\abx@aux@cite{JEC}
\abx@aux@segm{0}{0}{JEC}
\BKM@entry{id=24,dest={73756273756273656374696F6E2E352E322E31},srcline={1081},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030535C303030695C303030645C303030655C303030625C303030615C3030306E5C303030645C3030305C3034305C303030725C303030655C303030675C303030695C3030306F5C3030306E}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Data - Monte Carlo Comparison}{15}{subsection.5.2}\protected@file@percent }
\newlabel{data---monte-carlo-comparison}{{5.2}{15}{Data - Monte Carlo Comparison}{subsection.5.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.1}Sideband}{15}{subsubsection.5.2.1}\protected@file@percent }
\newlabel{sideband}{{5.2.1}{15}{Sideband}{subsubsection.5.2.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Demonstration of the effect of the $\mitDelta \miteta $ cut at $\mitDelta \miteta \le 1.3$. \newline Left: Partial dataset of $\SI {35.92}{\per \femto \barn }$ Right: Full dataset of $\SI {137.19}{\per \femto \barn }$. \relax }}{16}{figure.caption.10}\protected@file@percent }
\newlabel{fig:deta}{{9}{16}{Demonstration of the effect of the $\Delta \eta $ cut at $\Delta \eta \le 1.3$. \newline Left: Partial dataset of $\SI {35.92}{\per \femto \barn }$ Right: Full dataset of $\SI {137.19}{\per \femto \barn }$. \relax }{figure.caption.10}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.1}Sideband region}{15}{subsubsection.5.2.1}\protected@file@percent }
\newlabel{sideband-region}{{5.2.1}{15}{Sideband region}{subsubsection.5.2.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Demonstration of the effect of the $\mitDelta \miteta $ cut at $\mitDelta \miteta \le 1.3$ on the $m_{jj}$ distribution. \newline Left: Partial dataset of $\SI {35.92}{\per \femto \barn }$ Right: Full dataset of $\SI {137.19}{\per \femto \barn }$. \relax }}{16}{figure.caption.10}\protected@file@percent }
\newlabel{fig:deta}{{9}{16}{Demonstration of the effect of the $\Delta \eta $ cut at $\Delta \eta \le 1.3$ on the $m_{jj}$ distribution. \newline Left: Partial dataset of $\SI {35.92}{\per \femto \barn }$ Right: Full dataset of $\SI {137.19}{\per \femto \barn }$. \relax }{figure.caption.10}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Comparison of the invariant mass distribution before and after the cut at $m_{jj} \ge \SI {1050}{\giga \eV }$. It shows the expected smooth falling functions of the background whereas the signal peaks at the simulated resonance mass. \newline Left: distribution before the cut. Right: distribution after the cut.\relax }}{17}{figure.caption.11}\protected@file@percent }
\newlabel{fig:invmass}{{10}{17}{Comparison of the invariant mass distribution before and after the cut at $m_{jj} \ge \SI {1050}{\giga \eV }$. It shows the expected smooth falling functions of the background whereas the signal peaks at the simulated resonance mass. \newline Left: distribution before the cut. Right: distribution after the cut.\relax }{figure.caption.11}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Comparison of data with the Monte Carlo simulation.\relax }}{18}{figure.caption.12}\protected@file@percent }
\newlabel{fig:data-mc}{{11}{18}{Comparison of data with the Monte Carlo simulation.\relax }{figure.caption.12}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Comparison of data with the Monte Carlo simulation in the sideband region.\relax }}{19}{figure.caption.13}\protected@file@percent }
\newlabel{fig:sideband}{{12}{19}{Comparison of data with the Monte Carlo simulation in the sideband region.\relax }{figure.caption.13}{}}
\BKM@entry{id=25,dest={73656374696F6E2E36},srcline={1121},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C3030304A5C303030655C303030745C3030305C3034305C303030735C303030755C303030625C303030735C303030745C303030725C303030755C303030635C303030745C303030755C303030725C303030655C3030305C3034305C303030735C303030655C3030306C5C303030655C303030635C303030745C303030695C3030306F5C3030306E}
\BKM@entry{id=26,dest={73756273656374696F6E2E362E31},srcline={1146},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C3030304E5C3030302D5C303030535C303030755C303030625C3030306A5C303030655C303030745C303030745C303030695C3030306E5C303030655C303030735C30303073}
\BKM@entry{id=25,dest={73656374696F6E2E36},srcline={1123},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C3030304A5C303030655C303030745C3030305C3034305C303030735C303030755C303030625C303030735C303030745C303030725C303030755C303030635C303030745C303030755C303030725C303030655C3030305C3034305C303030735C303030655C3030306C5C303030655C303030635C303030745C303030695C3030306F5C3030306E}
\BKM@entry{id=26,dest={73756273656374696F6E2E362E31},srcline={1148},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C3030304E5C3030302D5C303030535C303030755C303030625C3030306A5C303030655C303030745C303030745C303030695C3030306E5C303030655C303030735C30303073}
\abx@aux@cite{TAU21}
\abx@aux@segm{0}{0}{TAU21}
\@writefile{toc}{\contentsline {section}{\numberline {6}Jet substructure selection}{20}{section.6}\protected@file@percent }
\newlabel{jet-substructure-selection}{{6}{20}{Jet substructure selection}{section.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}N-Subjettiness}{20}{subsection.6.1}\protected@file@percent }
\newlabel{n-subjettiness}{{6.1}{20}{N-Subjettiness}{subsection.6.1}{}}
\BKM@entry{id=27,dest={73756273656374696F6E2E362E32},srcline={1183},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030445C303030655C303030655C303030705C303030415C3030304B5C30303038}
\BKM@entry{id=27,dest={73756273656374696F6E2E362E32},srcline={1185},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030445C303030655C303030655C303030705C303030415C3030304B5C30303038}
\abx@aux@cite{DEEP_BOOSTED}
\abx@aux@segm{0}{0}{DEEP_BOOSTED}
\abx@aux@segm{0}{0}{DEEP_BOOSTED}
\abx@aux@segm{0}{0}{DEEP_BOOSTED}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}DeepAK8}{21}{subsection.6.2}\protected@file@percent }
\newlabel{deepak8}{{6.2}{21}{DeepAK8}{subsection.6.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Comparison of tagger efficiencies, showing, between others, the DeepAK8-MD (which stands for mass decorrelated and is the one used for this research) and \(\mittau _{21}\) tagger used in this analysis. Taken from \autocite {DEEP_BOOSTED}\relax }}{21}{figure.caption.14}\protected@file@percent }
\newlabel{fig:ak8_eff}{{13}{21}{Comparison of tagger efficiencies, showing, between others, the DeepAK8-MD (which stands for mass decorrelated and is the one used for this research) and \(\tau _{21}\) tagger used in this analysis. Taken from \autocite {DEEP_BOOSTED}\relax }{figure.caption.14}{}}
\BKM@entry{id=28,dest={73756273656374696F6E2E362E33},srcline={1238},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C3030304F5C303030705C303030745C303030695C3030306D5C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}Optimization}{22}{subsection.6.3}\protected@file@percent }
\newlabel{sec:opt}{{6.3}{22}{Optimization}{subsection.6.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Significance plots for the deep boosted (left) and N-subjettiness (right) tagger at the 2 TeV masspoint.\relax }}{22}{figure.caption.15}\protected@file@percent }
\newlabel{fig:sig}{{14}{22}{Significance plots for the deep boosted (left) and N-subjettiness (right) tagger at the 2 TeV masspoint.\relax }{figure.caption.15}{}}
\BKM@entry{id=29,dest={73656374696F6E2E37},srcline={1295},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030535C303030695C303030675C3030306E5C303030615C3030306C5C3030305C3034305C303030655C303030785C303030745C303030725C303030615C303030635C303030745C303030695C3030306F5C3030306E}
\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Comparison of tagger efficiencies, showing, between others, the DeepAK8 and \(\mittau _{21}\) tagger used in this analysis \autocite {DEEP_BOOSTED}.\relax }}{21}{figure.caption.14}\protected@file@percent }
\newlabel{fig:ak8_eff}{{13}{21}{Comparison of tagger efficiencies, showing, between others, the DeepAK8 and \(\tau _{21}\) tagger used in this analysis \autocite {DEEP_BOOSTED}.\relax }{figure.caption.14}{}}
\BKM@entry{id=28,dest={73756273656374696F6E2E362E33},srcline={1240},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C3030304F5C303030705C303030745C303030695C3030306D5C303030695C303030735C303030615C303030745C303030695C3030306F5C3030306E}
\abx@aux@cite{CLT}
\abx@aux@segm{0}{0}{CLT}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}Optimisation}{22}{subsection.6.3}\protected@file@percent }
\newlabel{sec:opt}{{6.3}{22}{Optimisation}{subsection.6.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Significance plots for the DeepAK8 (left) and N-subjettiness (right) tagger at the 2 TeV masspoint.\relax }}{22}{figure.caption.15}\protected@file@percent }
\newlabel{fig:sig}{{14}{22}{Significance plots for the DeepAK8 (left) and N-subjettiness (right) tagger at the 2 TeV masspoint.\relax }{figure.caption.15}{}}
\BKM@entry{id=29,dest={73656374696F6E2E37},srcline={1297},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030535C303030695C303030675C3030306E5C303030615C3030306C5C3030305C3034305C303030655C303030785C303030745C303030725C303030615C303030635C303030745C303030695C3030306F5C3030306E}
\abx@aux@cite{ASYMPTOTIC_LIMIT}
\abx@aux@segm{0}{0}{ASYMPTOTIC_LIMIT}
\abx@aux@segm{0}{0}{QSTAR_THEORY}
\BKM@entry{id=30,dest={73756273656374696F6E2E372E31},srcline={1328},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030535C303030795C303030735C303030745C303030655C3030306D5C303030615C303030745C303030695C303030635C3030305C3034305C303030555C3030306E5C303030635C303030655C303030725C303030745C303030615C303030695C3030306E5C303030745C303030695C303030655C30303073}
\BKM@entry{id=30,dest={73756273656374696F6E2E372E31},srcline={1330},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030535C303030795C303030735C303030745C303030655C3030306D5C303030615C303030745C303030695C303030635C3030305C3034305C303030555C3030306E5C303030635C303030655C303030725C303030745C303030615C303030695C3030306E5C303030745C303030695C303030655C30303073}
\abx@aux@cite{LUMI_UNC}
\abx@aux@segm{0}{0}{LUMI_UNC}
\@writefile{toc}{\contentsline {section}{\numberline {7}Signal extraction}{24}{section.7}\protected@file@percent }
\newlabel{sec:extr}{{7}{24}{Signal extraction}{section.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.1}Systematic Uncertainties}{24}{subsection.7.1}\protected@file@percent }
\newlabel{systematic-uncertainties}{{7.1}{24}{Systematic Uncertainties}{subsection.7.1}{}}
\BKM@entry{id=31,dest={73656374696F6E2E38},srcline={1357},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030525C303030655C303030735C303030755C3030306C5C303030745C30303073}
\BKM@entry{id=31,dest={73656374696F6E2E38},srcline={1359},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030525C303030655C303030735C303030755C3030306C5C303030745C30303073}
\abx@aux@segm{0}{0}{PREV_RESEARCH}
\BKM@entry{id=32,dest={73756273656374696F6E2E382E31},srcline={1368},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030505C303030615C303030725C303030745C303030695C303030615C3030306C5C3030305C3034305C303030645C303030615C303030745C303030615C303030735C303030655C30303074}
\BKM@entry{id=32,dest={73756273656374696F6E2E382E31},srcline={1370},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030505C303030615C303030725C303030745C303030695C303030615C3030306C5C3030305C3034305C303030645C303030615C303030745C303030615C303030735C303030655C30303074}
\gdef \LT@ii {\LT@entry
{1}{36.64455pt}\LT@entry
{3}{74.98244pt}\LT@entry
{3}{60.6504pt}\LT@entry
{1}{70.98048pt}\LT@entry
{1}{103.96877pt}\LT@entry
{1}{99.29884pt}}
\BKM@entry{id=33,dest={73756273756273656374696F6E2E382E312E31},srcline={1433},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030435C3030306F5C3030306D5C303030705C303030615C303030725C303030695C303030735C3030306F5C3030306E5C3030305C3034305C303030775C303030695C303030745C303030685C3030305C3034305C303030655C303030785C303030695C303030735C303030745C303030695C3030306E5C303030675C3030305C3034305C303030725C303030655C303030735C303030755C3030306C5C303030745C30303073}
\@writefile{toc}{\contentsline {section}{\numberline {8}Results}{26}{section.8}\protected@file@percent }
\newlabel{results}{{8}{26}{Results}{section.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.1}Partial dataset}{26}{subsection.8.1}\protected@file@percent }
\newlabel{partial-dataset}{{8.1}{26}{Partial dataset}{subsection.8.1}{}}
\newlabel{tbl:res2016}{{2}{26}{Partial dataset}{table.2}{}}
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Mass limits found using the partial dataset of \(\SI {35.92}{\per \femto \barn }\)\relax }}{26}{table.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {8.1.1}Comparison with existing results}{26}{subsubsection.8.1.1}\protected@file@percent }
\newlabel{comparison-with-existing-results}{{8.1.1}{26}{Comparison with existing results}{subsubsection.8.1.1}{}}
\newlabel{fig:res2016tw}{{15a}{27}{Subfigure 15a}{subfigure.15.1}{}}
\BKM@entry{id=33,dest={73756273756273656374696F6E2E382E312E31},srcline={1434},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030435C3030306F5C3030306D5C303030705C303030615C303030725C303030695C303030735C3030306F5C3030306E5C3030305C3034305C303030775C303030695C303030745C303030685C3030305C3034305C303030655C303030785C303030695C303030735C303030745C303030695C3030306E5C303030675C3030305C3034305C303030725C303030655C303030735C303030755C3030306C5C303030745C30303073}
\@writefile{toc}{\contentsline {section}{\numberline {8}Results}{25}{section.8}\protected@file@percent }
\newlabel{results}{{8}{25}{Results}{section.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.1}Partial dataset}{25}{subsection.8.1}\protected@file@percent }
\newlabel{partial-dataset}{{8.1}{25}{Partial dataset}{subsection.8.1}{}}
\newlabel{tbl:res2016}{{2}{25}{Partial dataset}{table.2}{}}
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Mass limits found using the partial dataset of \(\SI {35.92}{\per \femto \barn }\)\relax }}{25}{table.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {8.1.1}Comparison with existing results}{25}{subsubsection.8.1.1}\protected@file@percent }
\newlabel{comparison-with-existing-results}{{8.1.1}{25}{Comparison with existing results}{subsubsection.8.1.1}{}}
\newlabel{fig:res2016tw}{{15a}{26}{Subfigure 15a}{subfigure.15.1}{}}
\newlabel{sub@fig:res2016tw}{{(a)}{a}{Subfigure 15a\relax }{subfigure.15.1}{}}
\newlabel{fig:res2016dw}{{15b}{27}{Subfigure 15b}{subfigure.15.2}{}}
\newlabel{fig:res2016dw}{{15b}{26}{Subfigure 15b}{subfigure.15.2}{}}
\newlabel{sub@fig:res2016dw}{{(b)}{b}{Subfigure 15b\relax }{subfigure.15.2}{}}
\newlabel{fig:res2016tz}{{15c}{27}{Subfigure 15c}{subfigure.15.3}{}}
\newlabel{fig:res2016tz}{{15c}{26}{Subfigure 15c}{subfigure.15.3}{}}
\newlabel{sub@fig:res2016tz}{{(c)}{c}{Subfigure 15c\relax }{subfigure.15.3}{}}
\newlabel{fig:res2016dz}{{15d}{27}{Subfigure 15d}{subfigure.15.4}{}}
\newlabel{fig:res2016dz}{{15d}{26}{Subfigure 15d}{subfigure.15.4}{}}
\newlabel{sub@fig:res2016dz}{{(d)}{d}{Subfigure 15d\relax }{subfigure.15.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces Results of the cross section limits for the partial dataset of 2016 using the $\mittau _{21}$ tagger and the deep boosted tagger.\relax }}{27}{figure.caption.16}\protected@file@percent }
\newlabel{fig:res2016}{{15}{27}{Results of the cross section limits for the partial dataset of 2016 using the $\tau _{21}$ tagger and the deep boosted tagger.\relax }{figure.caption.16}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Decay to qW, using N-subjettiness tagger}}}{27}{subfigure.15.1}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Decay to qW, using deep boosted tagger}}}{27}{subfigure.15.2}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Decay to qZ, using N-subjettiness tagger}}}{27}{subfigure.15.3}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Decay to qZ, using deep boosted tagger}}}{27}{subfigure.15.4}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces Results of the cross section limits for the partial dataset of 2016 using the $\mittau _{21}$ tagger and the deep boosted tagger.\relax }}{26}{figure.caption.16}\protected@file@percent }
\newlabel{fig:res2016}{{15}{26}{Results of the cross section limits for the partial dataset of 2016 using the $\tau _{21}$ tagger and the deep boosted tagger.\relax }{figure.caption.16}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Decay to qW, using N-subjettiness tagger}}}{26}{subfigure.15.1}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Decay to qW, using DeepAK8 tagger}}}{26}{subfigure.15.2}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Decay to qZ, using N-subjettiness tagger}}}{26}{subfigure.15.3}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Decay to qZ, using DeepAK8 tagger}}}{26}{subfigure.15.4}\protected@file@percent }
\abx@aux@segm{0}{0}{PREV_RESEARCH}
\abx@aux@segm{0}{0}{PREV_RESEARCH}
\BKM@entry{id=34,dest={73756273656374696F6E2E382E32},srcline={1470},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030435C3030306F5C3030306D5C303030625C303030695C3030306E5C303030655C303030645C3030305C3034305C303030645C303030615C303030745C303030615C303030735C303030655C30303074}
\BKM@entry{id=34,dest={73756273656374696F6E2E382E32},srcline={1471},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030435C3030306F5C3030306D5C303030625C303030695C3030306E5C303030655C303030645C3030305C3034305C303030645C303030615C303030745C303030615C303030735C303030655C30303074}
\gdef \LT@iii {\LT@entry
{1}{36.64455pt}\LT@entry
{3}{74.98244pt}\LT@entry
{3}{60.6504pt}\LT@entry
{1}{70.98048pt}\LT@entry
{1}{103.96877pt}\LT@entry
{1}{99.29884pt}}
\abx@aux@segm{0}{0}{PREV_RESEARCH}
\BKM@entry{id=35,dest={73756273656374696F6E2E382E33},srcline={1528},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030435C3030306F5C3030306D5C303030705C303030615C303030725C303030695C303030735C3030306F5C3030306E5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030615C303030675C303030675C303030655C303030725C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Previous results of the cross section limits for q\discretionary {\tmspace +\thinmuskip {.1667em}\TU/latinmodern-math.otf(2)/m/n/12 \char 2}{}{} decaying to qW (left) and q\discretionary {\tmspace +\thinmuskip {.1667em}\TU/latinmodern-math.otf(2)/m/n/12 \char 2}{}{} decaying to qZ (right). Taken from \cite {PREV_RESEARCH}.\relax }}{28}{figure.caption.17}\protected@file@percent }
\newlabel{fig:prev}{{16}{28}{Previous results of the cross section limits for q\* decaying to qW (left) and q\* decaying to qZ (right). Taken from \cite {PREV_RESEARCH}.\relax }{figure.caption.17}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.2}Combined dataset}{28}{subsection.8.2}\protected@file@percent }
\newlabel{combined-dataset}{{8.2}{28}{Combined dataset}{subsection.8.2}{}}
\newlabel{tbl:resCombined}{{3}{28}{Combined dataset}{table.3}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Mass limits found using \(\SI {137.19}{\per \femto \barn }\) of data\relax }}{28}{table.3}\protected@file@percent }
\newlabel{fig:resCombinedtw}{{17a}{29}{Subfigure 17a}{subfigure.17.1}{}}
\BKM@entry{id=35,dest={73756273656374696F6E2E382E33},srcline={1529},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030435C3030306F5C3030306D5C303030705C303030615C303030725C303030695C303030735C3030306F5C3030306E5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030615C303030675C303030675C303030655C303030725C30303073}
\@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Previous results of the cross section limits for q\discretionary {\tmspace +\thinmuskip {.1667em}\TU/latinmodern-math.otf(2)/m/n/12 \char 2}{}{} decaying to qW (left) and q\discretionary {\tmspace +\thinmuskip {.1667em}\TU/latinmodern-math.otf(2)/m/n/12 \char 2}{}{} decaying to qZ (right) \cite {PREV_RESEARCH}.\relax }}{27}{figure.caption.17}\protected@file@percent }
\newlabel{fig:prev}{{16}{27}{Previous results of the cross section limits for q\* decaying to qW (left) and q\* decaying to qZ (right) \cite {PREV_RESEARCH}.\relax }{figure.caption.17}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.2}Combined dataset}{27}{subsection.8.2}\protected@file@percent }
\newlabel{combined-dataset}{{8.2}{27}{Combined dataset}{subsection.8.2}{}}
\newlabel{tbl:resCombined}{{3}{27}{Combined dataset}{table.3}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Mass limits found using \(\SI {137.19}{\per \femto \barn }\) of data\relax }}{27}{table.3}\protected@file@percent }
\newlabel{fig:resCombinedtw}{{17a}{28}{Subfigure 17a}{subfigure.17.1}{}}
\newlabel{sub@fig:resCombinedtw}{{(a)}{a}{Subfigure 17a\relax }{subfigure.17.1}{}}
\newlabel{fig:resCombineddw}{{17b}{29}{Subfigure 17b}{subfigure.17.2}{}}
\newlabel{fig:resCombineddw}{{17b}{28}{Subfigure 17b}{subfigure.17.2}{}}
\newlabel{sub@fig:resCombineddw}{{(b)}{b}{Subfigure 17b\relax }{subfigure.17.2}{}}
\newlabel{fig:resCombinedtz}{{17c}{29}{Subfigure 17c}{subfigure.17.3}{}}
\newlabel{fig:resCombinedtz}{{17c}{28}{Subfigure 17c}{subfigure.17.3}{}}
\newlabel{sub@fig:resCombinedtz}{{(c)}{c}{Subfigure 17c\relax }{subfigure.17.3}{}}
\newlabel{fig:resCombineddz}{{17d}{29}{Subfigure 17d}{subfigure.17.4}{}}
\newlabel{fig:resCombineddz}{{17d}{28}{Subfigure 17d}{subfigure.17.4}{}}
\newlabel{sub@fig:resCombineddz}{{(d)}{d}{Subfigure 17d\relax }{subfigure.17.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Results of the cross section limits for the combined dataset using the $\mittau _{21}$ tagger and the deep boosted tagger.\relax }}{29}{figure.caption.18}\protected@file@percent }
\newlabel{fig:resCombined}{{17}{29}{Results of the cross section limits for the combined dataset using the $\tau _{21}$ tagger and the deep boosted tagger.\relax }{figure.caption.18}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Decay to qW, using N-subjettiness tagger}}}{29}{subfigure.17.1}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Decay to qW, using deep boosted tagger}}}{29}{subfigure.17.2}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Decay to qZ, using N-subjettiness tagger}}}{29}{subfigure.17.3}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Decay to qZ, using deep boosted tagger}}}{29}{subfigure.17.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {8.3}Comparison of taggers}{30}{subsection.8.3}\protected@file@percent }
\newlabel{comparison-of-taggers}{{8.3}{30}{Comparison of taggers}{subsection.8.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Results of the cross section limits for the combined dataset using the $\mittau _{21}$ tagger and the DeepAK8 tagger.\relax }}{28}{figure.caption.18}\protected@file@percent }
\newlabel{fig:resCombined}{{17}{28}{Results of the cross section limits for the combined dataset using the $\tau _{21}$ tagger and the DeepAK8 tagger.\relax }{figure.caption.18}{}}
\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Decay to qW, using N-subjettiness tagger}}}{28}{subfigure.17.1}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Decay to qW, using DeepAK8 tagger}}}{28}{subfigure.17.2}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Decay to qZ, using N-subjettiness tagger}}}{28}{subfigure.17.3}\protected@file@percent }
\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Decay to qZ, using DeepAK8 tagger}}}{28}{subfigure.17.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {8.3}Comparison of taggers}{29}{subsection.8.3}\protected@file@percent }
\newlabel{comparison-of-taggers}{{8.3}{29}{Comparison of taggers}{subsection.8.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Comparison of expected limits of the different taggers using different datasets. Left: decay to qW. Right: decay to qZ\relax }}{30}{figure.caption.19}\protected@file@percent }
\newlabel{fig:limit_comp}{{18}{30}{Comparison of expected limits of the different taggers using different datasets. Left: decay to qW. Right: decay to qZ\relax }{figure.caption.19}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Comparision of deep boosted and N-subjettiness tagger in the high purity category using the data from year 2018.\relax }}{31}{figure.caption.20}\protected@file@percent }
\newlabel{fig:comp_2018}{{19}{31}{Comparision of deep boosted and N-subjettiness tagger in the high purity category using the data from year 2018.\relax }{figure.caption.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Comparison of DeepAK8 and N-subjettiness tagger in the high purity category using the data from year 2018.\relax }}{30}{figure.caption.20}\protected@file@percent }
\newlabel{fig:comp_2018}{{19}{30}{Comparison of DeepAK8 and N-subjettiness tagger in the high purity category using the data from year 2018.\relax }{figure.caption.20}{}}
\BKM@entry{id=36,dest={73656374696F6E2E39},srcline={1587},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030535C303030755C3030306D5C3030306D5C303030615C303030725C30303079}
\@writefile{toc}{\contentsline {section}{\numberline {9}Summary}{32}{section.9}\protected@file@percent }
\newlabel{summary}{{9}{32}{Summary}{section.9}{}}
\BKM@entry{id=37,dest={617070656E6469782E41},srcline={1642},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030455C303030785C303030705C303030655C303030635C303030745C303030655C303030645C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C3030306F5C303030625C303030735C303030655C303030725C303030765C303030655C303030645C3030305C3034305C303030635C303030725C3030306F5C303030735C303030735C3030305C3034305C303030735C303030655C303030635C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306C5C303030695C3030306D5C303030695C303030745C30303073}
\@writefile{toc}{\contentsline {section}{\numberline {9}Summary}{31}{section.9}\protected@file@percent }
\newlabel{summary}{{9}{31}{Summary}{section.9}{}}
\BKM@entry{id=37,dest={617070656E6469782E41},srcline={1647},srcfile={2E2F7468657369732E746578}}{5C3337365C3337375C303030455C303030785C303030705C303030655C303030635C303030745C303030655C303030645C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C3030306F5C303030625C303030735C303030655C303030725C303030765C303030655C303030645C3030305C3034305C303030635C303030725C3030306F5C303030735C303030735C3030305C3034305C303030735C303030655C303030635C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306C5C303030695C3030306D5C303030695C303030745C30303073}
\gdef \LT@iv {\LT@entry
{1}{63.6504pt}\LT@entry
{1}{83.9922pt}\LT@entry
{1}{90.6504pt}\LT@entry
{1}{91.98048pt}\LT@entry
{1}{77.99806pt}}
\@writefile{toc}{\contentsline {section}{\numberline {A}Expected and observed cross section limits}{34}{appendix.A}\protected@file@percent }
\newlabel{expected-and-observed-cross-section-limits}{{A}{34}{Expected and observed cross section limits}{appendix.A}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Cross Section limits using 2016 data and the N-subjettiness tagger for the decay to qW\relax }}{34}{table.4}\protected@file@percent }
\gdef \LT@v {\LT@entry
{1}{63.6504pt}\LT@entry
{1}{83.9922pt}\LT@entry
@ -287,48 +297,55 @@
{1}{90.6504pt}\LT@entry
{1}{91.98048pt}\LT@entry
{1}{77.99806pt}}
\@writefile{toc}{\contentsline {section}{\numberline {A}Expected and observed cross section limits}{34}{appendix.A}\protected@file@percent }
\newlabel{expected-and-observed-cross-section-limits}{{A}{34}{Expected and observed cross section limits}{appendix.A}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Cross Section limits using 2016 data and the N-subjettiness tagger for the decay to qW\relax }}{34}{table.4}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {5}{\ignorespaces Cross Section limits using 2016 data and the deep boosted tagger for the decay to qW\relax }}{34}{table.5}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {6}{\ignorespaces Cross Section limits using 2016 data and the N-subjettiness tagger for the decay to qZ\relax }}{34}{table.6}\protected@file@percent }
\gdef \LT@vii {\LT@entry
{1}{63.6504pt}\LT@entry
{1}{83.9922pt}\LT@entry
{1}{90.6504pt}\LT@entry
{1}{91.98048pt}\LT@entry
{1}{77.99806pt}}
\@writefile{lot}{\contentsline {table}{\numberline {5}{\ignorespaces Cross Section limits using 2016 data and the deep boosted tagger for the decay to qW\relax }}{35}{table.5}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {6}{\ignorespaces Cross Section limits using 2016 data and the N-subjettiness tagger for the decay to qZ\relax }}{35}{table.6}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {7}{\ignorespaces Cross Section limits using 2016 data and deep boosted tagger for the decay to qZ\relax }}{35}{table.7}\protected@file@percent }
\gdef \LT@viii {\LT@entry
{1}{63.6504pt}\LT@entry
{1}{83.9922pt}\LT@entry
{1}{90.6504pt}\LT@entry
{1}{91.98048pt}\LT@entry
{1}{77.99806pt}}
\@writefile{lot}{\contentsline {table}{\numberline {7}{\ignorespaces Cross Section limits using 2016 data and deep boosted tagger for the decay to qZ\relax }}{35}{table.7}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {8}{\ignorespaces Cross Section limits using the combined data and the N-subjettiness tagger for the decay to qW\relax }}{35}{table.8}\protected@file@percent }
\gdef \LT@ix {\LT@entry
{1}{63.6504pt}\LT@entry
{1}{83.9922pt}\LT@entry
{1}{90.6504pt}\LT@entry
{1}{91.98048pt}\LT@entry
{1}{77.99806pt}}
\@writefile{lot}{\contentsline {table}{\numberline {8}{\ignorespaces Cross Section limits using the combined data and the N-subjettiness tagger for the decay to qW\relax }}{36}{table.8}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {9}{\ignorespaces Cross Section limits using the combined data and the deep boosted tagger for the decay to qW\relax }}{36}{table.9}\protected@file@percent }
\gdef \LT@x {\LT@entry
{1}{63.6504pt}\LT@entry
{1}{83.9922pt}\LT@entry
{1}{90.6504pt}\LT@entry
{1}{91.98048pt}\LT@entry
{1}{77.99806pt}}
\@writefile{lot}{\contentsline {table}{\numberline {9}{\ignorespaces Cross Section limits using the combined data and the deep boosted tagger for the decay to qW\relax }}{36}{table.9}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {10}{\ignorespaces Cross Section limits using the combined data and the N-subjettiness tagger for the decay to qZ\relax }}{36}{table.10}\protected@file@percent }
\gdef \LT@xi {\LT@entry
{1}{63.6504pt}\LT@entry
{1}{83.9922pt}\LT@entry
{1}{90.6504pt}\LT@entry
{1}{91.98048pt}\LT@entry
{1}{77.99806pt}}
\abx@aux@refcontextdefaultsdone
\@writefile{lot}{\contentsline {table}{\numberline {11}{\ignorespaces Cross Section limits using the combined data and deep boosted tagger for the decay to qZ\relax }}{37}{table.11}\protected@file@percent }
\abx@aux@defaultrefcontext{0}{ERECO}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{MADGRAPH}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{QSTAR_THEORY}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{CMS_REPORT}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{PARTICLE_FLOW}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{ANTIKT}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{PREV_RESEARCH}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{CMS_LUMI}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{LUMI_UNC}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{SM}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{ASYMPTOTIC_LIMIT}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{SUC_COMBINATION}{nty/global//global/global}
@ -336,11 +353,12 @@
\abx@aux@defaultrefcontext{0}{SDM}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{COORD_PLOT}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{DEEP_BOOSTED}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{CLT}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{MONTECARLO}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{JEC}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{CMS_PLOT}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{PYTHIA8}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{PARTICLE_PHYSICS}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{TAU21}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{CMS_TRIGGER}{nty/global//global/global}
\abx@aux@defaultrefcontext{0}{HADRONIZATION}{nty/global//global/global}
\@writefile{lot}{\contentsline {table}{\numberline {10}{\ignorespaces Cross Section limits using the combined data and the N-subjettiness tagger for the decay to qZ\relax }}{37}{table.10}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {11}{\ignorespaces Cross Section limits using the combined data and deep boosted tagger for the decay to qZ\relax }}{37}{table.11}\protected@file@percent }

View File

@ -56,6 +56,78 @@
\field{year}{2005}
\true{nocite}
\endentry
\entry{MADGRAPH}{misc}{}
\name{author}{10}{}{%
{{hash=db770a0dfc4628a7437bedbd56f940d4}{%
family={Alwall},
familyi={A\bibinitperiod},
given={J.},
giveni={J\bibinitperiod}}}%
{{hash=87f8432b90fa1363547627dd900ac62d}{%
family={Frederix},
familyi={F\bibinitperiod},
given={R.},
giveni={R\bibinitperiod}}}%
{{hash=36ec2b0a28a3159dd489a8e0ce4c5e16}{%
family={Frixione},
familyi={F\bibinitperiod},
given={S.},
giveni={S\bibinitperiod}}}%
{{hash=da2920448eb87fb33798abb131da464b}{%
family={Hirschi},
familyi={H\bibinitperiod},
given={V.},
giveni={V\bibinitperiod}}}%
{{hash=146d5a62e8ec749ce3c087e42804f0a6}{%
family={Maltoni},
familyi={M\bibinitperiod},
given={F.},
giveni={F\bibinitperiod}}}%
{{hash=d6305f4a2bb37c97934d4f0cae42109e}{%
family={Mattelaer},
familyi={M\bibinitperiod},
given={O.},
giveni={O\bibinitperiod}}}%
{{hash=437e153e70283e1bc3b1ec3ad54d6fae}{%
family={Shao},
familyi={S\bibinitperiod},
given={H.\bibnamedelimi -S.},
giveni={H\bibinitperiod\bibinitdelim \bibinithyphendelim \bibinithyphendelim S\bibinitperiod}}}%
{{hash=86e07bd86b6c081d973cbedd27c360ab}{%
family={Stelzer},
familyi={S\bibinitperiod},
given={T.},
giveni={T\bibinitperiod}}}%
{{hash=9ef6ecb08c2c6e622eec344decdbb82c}{%
family={Torrielli},
familyi={T\bibinitperiod},
given={P.},
giveni={P\bibinitperiod}}}%
{{hash=97b1b02748b4a359125a674e12ece48b}{%
family={Zaro},
familyi={Z\bibinitperiod},
given={M.},
giveni={M\bibinitperiod}}}%
}
\strng{namehash}{98c22186c090664cd0aa787235a12e76}
\strng{fullhash}{261fa39fa69c14924b0287f2a0cd40a4}
\strng{bibnamehash}{98c22186c090664cd0aa787235a12e76}
\strng{authorbibnamehash}{98c22186c090664cd0aa787235a12e76}
\strng{authornamehash}{98c22186c090664cd0aa787235a12e76}
\strng{authorfullhash}{261fa39fa69c14924b0287f2a0cd40a4}
\field{sortinit}{A}
\field{sortinithash}{a3dcedd53b04d1adfd5ac303ecd5e6fa}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{eprintclass}{hep-ph}
\field{eprinttype}{arXiv}
\field{title}{The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations}
\field{year}{2014}
\true{nocite}
\verb{eprint}
\verb 1405.0301
\endverb
\endentry
\entry{QSTAR_THEORY}{article}{}
\name{author}{3}{}{%
{{hash=975f54c5d20f670db43790893a049ad9}{%
@ -10290,6 +10362,43 @@
\endverb
\keyw{High Energy Physics - Experiment}
\endentry
\entry{CMS_LUMI}{online}{}
\field{sortinit}{C}
\field{sortinithash}{4c244ceae61406cdc0cc2ce1cb1ff703}
\field{labeltitlesource}{title}
\field{note}{Online; accessed Oct. 2019}
\field{title}{CMS Luminosity - Public Results}
\field{year}{2019}
\true{nocite}
\verb{urlraw}
\verb https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults
\endverb
\verb{url}
\verb https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults
\endverb
\endentry
\entry{LUMI_UNC}{report}{}
\list{institution}{1}{%
{CERN}%
}
\list{location}{1}{%
{Geneva}%
}
\field{sortinit}{C}
\field{sortinithash}{4c244ceae61406cdc0cc2ce1cb1ff703}
\field{labeltitlesource}{title}
\field{number}{CMS-PAS-LUM-17-001}
\field{title}{{CMS Luminosity Measurements for the 2016 Data Taking Period}}
\field{type}{techreport}
\field{year}{2017}
\true{nocite}
\verb{urlraw}
\verb https://cds.cern.ch/record/2257069
\endverb
\verb{url}
\verb https://cds.cern.ch/record/2257069
\endverb
\endentry
\entry{SM}{online}{}
\name{author}{1}{}{%
{{hash=e2ceeea38f8620383cfbd3e99c5c0cd8}{%
@ -10565,6 +10674,37 @@
\verb https://cds.cern.ch/record/2683870
\endverb
\endentry
\entry{CLT}{online}{}
\name{author}{1}{}{%
{{hash=e28225b92fb55bccfd1b2f557fd3124b}{%
family={Mathematics},
familyi={M\bibinitperiod},
given={Encyclopedia},
giveni={E\bibinitperiod},
prefix={of},
prefixi={o\bibinitperiod}}}%
}
\strng{namehash}{e28225b92fb55bccfd1b2f557fd3124b}
\strng{fullhash}{e28225b92fb55bccfd1b2f557fd3124b}
\strng{bibnamehash}{e28225b92fb55bccfd1b2f557fd3124b}
\strng{authorbibnamehash}{e28225b92fb55bccfd1b2f557fd3124b}
\strng{authornamehash}{e28225b92fb55bccfd1b2f557fd3124b}
\strng{authorfullhash}{e28225b92fb55bccfd1b2f557fd3124b}
\field{sortinit}{M}
\field{sortinithash}{2e5c2f51f7fa2d957f3206819bf86dc3}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{note}{Online; accessed Oct. 2019}
\field{title}{Central limit theorem}
\field{year}{2012}
\true{nocite}
\verb{urlraw}
\verb http://www.encyclopediaofmath.org/index.php?title=Central_limit_theorem&oldid=26376
\endverb
\verb{url}
\verb http://www.encyclopediaofmath.org/index.php?title=Central_limit_theorem&oldid=26376
\endverb
\endentry
\entry{MONTECARLO}{article}{}
\name{author}{1}{}{%
{{hash=3bf26a54358e94979b47013e6f17f948}{%
@ -10598,6 +10738,21 @@
\endverb
\keyw{Condensed Matter - Statistical Mechanics,Physics - Computational Physics}
\endentry
\entry{JEC}{online}{}
\field{sortinit}{R}
\field{sortinithash}{b9c68a358aea118dfa887b6e902414a7}
\field{labeltitlesource}{title}
\field{note}{Online; accessed Oct. 2019}
\field{title}{Recommended Jet Energy Corrections and Uncertainties For Data and MC}
\field{year}{2019}
\true{nocite}
\verb{urlraw}
\verb https://twiki.cern.ch/twiki/bin/viewauth/CMS/JECDataMC
\endverb
\verb{url}
\verb https://twiki.cern.ch/twiki/bin/viewauth/CMS/JECDataMC
\endverb
\endentry
\entry{CMS_PLOT}{article}{}
\name{author}{2229}{}{%
{{hash=eb39bbc4713b0118366317a14ed623c7}{%
@ -21780,6 +21935,78 @@
\verb https://cds.cern.ch/record/2270046
\endverb
\endentry
\entry{PYTHIA8}{misc}{}
\name{author}{10}{}{%
{{hash=1f7e99224e14002bdface802b6379512}{%
family={Sjöstrand},
familyi={S\bibinitperiod},
given={Torbjörn},
giveni={T\bibinitperiod}}}%
{{hash=ff13235d93756d3379349e38f8229395}{%
family={Ask},
familyi={A\bibinitperiod},
given={Stefan},
giveni={S\bibinitperiod}}}%
{{hash=5581c0413dd7fd5c57d2334c00de1162}{%
family={Christiansen},
familyi={C\bibinitperiod},
given={Jesper\bibnamedelima R.},
giveni={J\bibinitperiod\bibinitdelim R\bibinitperiod}}}%
{{hash=39433ee7fe060cb02937e1d447218ce3}{%
family={Corke},
familyi={C\bibinitperiod},
given={Richard},
giveni={R\bibinitperiod}}}%
{{hash=d9ede315d9535d79d63b9d64a2307cfd}{%
family={Desai},
familyi={D\bibinitperiod},
given={Nishita},
giveni={N\bibinitperiod}}}%
{{hash=516a0cd8376e1ba0a0bcf1284dd920c9}{%
family={Ilten},
familyi={I\bibinitperiod},
given={Philip},
giveni={P\bibinitperiod}}}%
{{hash=b2f5b287eab22155743b6f6e452539c9}{%
family={Mrenna},
familyi={M\bibinitperiod},
given={Stephen},
giveni={S\bibinitperiod}}}%
{{hash=312a31f430cf1ba02b15944e08cd63f6}{%
family={Prestel},
familyi={P\bibinitperiod},
given={Stefan},
giveni={S\bibinitperiod}}}%
{{hash=370f72a19eab82f125bce3ca2006e12b}{%
family={Rasmussen},
familyi={R\bibinitperiod},
given={Christine\bibnamedelima O.},
giveni={C\bibinitperiod\bibinitdelim O\bibinitperiod}}}%
{{hash=d07ecde30a48771685fd69b1eb4960d6}{%
family={Skands},
familyi={S\bibinitperiod},
given={Peter\bibnamedelima Z.},
giveni={P\bibinitperiod\bibinitdelim Z\bibinitperiod}}}%
}
\strng{namehash}{214de42c5c16a2b9c81a3d1b9ef923cf}
\strng{fullhash}{db2e81669ff3f7c57ff54f1b12c3f5e2}
\strng{bibnamehash}{214de42c5c16a2b9c81a3d1b9ef923cf}
\strng{authorbibnamehash}{214de42c5c16a2b9c81a3d1b9ef923cf}
\strng{authornamehash}{214de42c5c16a2b9c81a3d1b9ef923cf}
\strng{authorfullhash}{db2e81669ff3f7c57ff54f1b12c3f5e2}
\field{sortinit}{S}
\field{sortinithash}{c319cff79d99c853d775f88277d4e45f}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{eprintclass}{hep-ph}
\field{eprinttype}{arXiv}
\field{title}{An Introduction to PYTHIA 8.2}
\field{year}{2014}
\true{nocite}
\verb{eprint}
\verb 1410.3012
\endverb
\endentry
\entry{PARTICLE_PHYSICS}{article}{}
\name{author}{231}{}{%
{{hash=468dd31f33955bc12b7c31e820de613d}{%

View File

@ -2004,30 +2004,37 @@
<bcf:citekey order="7">PREV_RESEARCH</bcf:citekey>
<bcf:citekey order="8">LHC_MACHINE</bcf:citekey>
<bcf:citekey order="9">CMS_REPORT</bcf:citekey>
<bcf:citekey order="10">CMS_PLOT</bcf:citekey>
<bcf:citekey order="10">CMS_LUMI</bcf:citekey>
<bcf:citekey order="11">CMS_PLOT</bcf:citekey>
<bcf:citekey order="12">COORD_PLOT</bcf:citekey>
<bcf:citekey order="12">CMS_PLOT</bcf:citekey>
<bcf:citekey order="13">COORD_PLOT</bcf:citekey>
<bcf:citekey order="14">PARTICLE_FLOW</bcf:citekey>
<bcf:citekey order="15">ERECO</bcf:citekey>
<bcf:citekey order="16">ANTIKT</bcf:citekey>
<bcf:citekey order="14">COORD_PLOT</bcf:citekey>
<bcf:citekey order="15">PARTICLE_FLOW</bcf:citekey>
<bcf:citekey order="16">ERECO</bcf:citekey>
<bcf:citekey order="17">ANTIKT</bcf:citekey>
<bcf:citekey order="18">ANTIKT</bcf:citekey>
<bcf:citekey order="19">SDM</bcf:citekey>
<bcf:citekey order="20">PREV_RESEARCH</bcf:citekey>
<bcf:citekey order="19">ANTIKT</bcf:citekey>
<bcf:citekey order="20">SDM</bcf:citekey>
<bcf:citekey order="21">PREV_RESEARCH</bcf:citekey>
<bcf:citekey order="22">MONTECARLO</bcf:citekey>
<bcf:citekey order="23">QSTAR_THEORY</bcf:citekey>
<bcf:citekey order="24">TAU21</bcf:citekey>
<bcf:citekey order="25">DEEP_BOOSTED</bcf:citekey>
<bcf:citekey order="26">DEEP_BOOSTED</bcf:citekey>
<bcf:citekey order="27">DEEP_BOOSTED</bcf:citekey>
<bcf:citekey order="28">ASYMPTOTIC_LIMIT</bcf:citekey>
<bcf:citekey order="29">QSTAR_THEORY</bcf:citekey>
<bcf:citekey order="30">PREV_RESEARCH</bcf:citekey>
<bcf:citekey order="31">PREV_RESEARCH</bcf:citekey>
<bcf:citekey order="32">PREV_RESEARCH</bcf:citekey>
<bcf:citekey order="33">PREV_RESEARCH</bcf:citekey>
<bcf:citekey order="22">PREV_RESEARCH</bcf:citekey>
<bcf:citekey order="23">MONTECARLO</bcf:citekey>
<bcf:citekey order="24">MADGRAPH</bcf:citekey>
<bcf:citekey order="25">PYTHIA8</bcf:citekey>
<bcf:citekey order="26">QSTAR_THEORY</bcf:citekey>
<bcf:citekey order="27">MADGRAPH</bcf:citekey>
<bcf:citekey order="28">JEC</bcf:citekey>
<bcf:citekey order="29">TAU21</bcf:citekey>
<bcf:citekey order="30">DEEP_BOOSTED</bcf:citekey>
<bcf:citekey order="31">DEEP_BOOSTED</bcf:citekey>
<bcf:citekey order="32">DEEP_BOOSTED</bcf:citekey>
<bcf:citekey order="33">CLT</bcf:citekey>
<bcf:citekey order="34">ASYMPTOTIC_LIMIT</bcf:citekey>
<bcf:citekey order="35">QSTAR_THEORY</bcf:citekey>
<bcf:citekey order="36">LUMI_UNC</bcf:citekey>
<bcf:citekey order="37">PREV_RESEARCH</bcf:citekey>
<bcf:citekey order="38">PREV_RESEARCH</bcf:citekey>
<bcf:citekey order="39">PREV_RESEARCH</bcf:citekey>
<bcf:citekey order="40">PREV_RESEARCH</bcf:citekey>
<bcf:citekey order="0" nocite="1">*</bcf:citekey>
</bcf:section>
<!-- SORTING TEMPLATES -->

View File

@ -1,29 +1,29 @@
[0] Config.pm:304> INFO - This is Biber 2.12
[0] Config.pm:307> INFO - Logfile is 'thesis.blg'
[20] biber:315> INFO - === Do Okt 31, 2019, 19:46:44
[39] Biber.pm:371> INFO - Reading 'thesis.bcf'
[97] Biber.pm:886> INFO - Using all citekeys in bib section 0
[107] Biber.pm:4093> INFO - Processing section 0
[117] Biber.pm:4254> INFO - Looking for bibtex format file 'bibliography.bib' for section 0
[126] bibtex.pm:1523> INFO - LaTeX decoding ...
[243] bibtex.pm:1340> INFO - Found BibTeX data source 'bibliography.bib'
[254] Utils.pm:193> WARN - month field 'Aug' in entry 'PREV_RESEARCH' is not an integer - this will probably not sort properly.
[263] Utils.pm:193> WARN - month field 'Nov' in entry 'HADRONIZATION' is not an integer - this will probably not sort properly.
[270] Utils.pm:193> WARN - month field 'Jan' in entry 'PARTICLE_FLOW' is not an integer - this will probably not sort properly.
[277] Utils.pm:193> WARN - month field 'Mar' in entry 'TAU21' is not an integer - this will probably not sort properly.
[285] Utils.pm:193> WARN - month field 'May' in entry 'SDM' is not an integer - this will probably not sort properly.
[292] Utils.pm:193> WARN - month field 'Feb' in entry 'ASYMPTOTIC_LIMIT' is not an integer - this will probably not sort properly.
[298] Utils.pm:193> WARN - month field 'Apr' in entry 'ANTIKT' is not an integer - this will probably not sort properly.
[572] Utils.pm:193> WARN - month field 'Aug' in entry 'PARTICLE_PHYSICS' is not an integer - this will probably not sort properly.
[576] Utils.pm:193> WARN - month field 'Apr' in entry 'MONTECARLO' is not an integer - this will probably not sort properly.
[579] Utils.pm:193> WARN - month field 'Oct' in entry 'CMS_TRIGGER' is not an integer - this will probably not sort properly.
[3177] Utils.pm:193> WARN - month field 'Jun' in entry 'CMS_PLOT' is not an integer - this will probably not sort properly.
[3181] Utils.pm:193> WARN - month field 'Oct' in entry 'SUC_COMBINATION' is not an integer - this will probably not sort properly.
[5523] Utils.pm:193> WARN - month field 'aug' in entry 'LHC_MACHINE' is not an integer - this will probably not sort properly.
[5662] UCollate.pm:68> INFO - Overriding locale 'en-GB' defaults 'variable = shifted' with 'variable = non-ignorable'
[5662] UCollate.pm:68> INFO - Overriding locale 'en-GB' defaults 'normalization = NFD' with 'normalization = prenormalized'
[5662] Biber.pm:3921> INFO - Sorting list 'nty/global//global/global' of type 'entry' with template 'nty' and locale 'en-GB'
[5662] Biber.pm:3927> INFO - No sort tailoring available for locale 'en-GB'
[5817] bbl.pm:636> INFO - Writing 'thesis.bbl' with encoding 'UTF-8'
[13628] bbl.pm:739> INFO - Output to thesis.bbl
[13630] Biber.pm:110> INFO - WARNINGS: 13
[21] biber:315> INFO - === Fr Nov 1, 2019, 11:53:58
[38] Biber.pm:371> INFO - Reading 'thesis.bcf'
[93] Biber.pm:886> INFO - Using all citekeys in bib section 0
[104] Biber.pm:4093> INFO - Processing section 0
[113] Biber.pm:4254> INFO - Looking for bibtex format file 'bibliography.bib' for section 0
[122] bibtex.pm:1523> INFO - LaTeX decoding ...
[242] bibtex.pm:1340> INFO - Found BibTeX data source 'bibliography.bib'
[2558] Utils.pm:193> WARN - month field 'Oct' in entry 'CMS_TRIGGER' is not an integer - this will probably not sort properly.
[2561] Utils.pm:193> WARN - month field 'Jan' in entry 'PARTICLE_FLOW' is not an integer - this will probably not sort properly.
[2834] Utils.pm:193> WARN - month field 'Aug' in entry 'PARTICLE_PHYSICS' is not an integer - this will probably not sort properly.
[2837] Utils.pm:193> WARN - month field 'Aug' in entry 'PREV_RESEARCH' is not an integer - this will probably not sort properly.
[5407] Utils.pm:193> WARN - month field 'Jun' in entry 'CMS_PLOT' is not an integer - this will probably not sort properly.
[5413] Utils.pm:193> WARN - month field 'Apr' in entry 'ANTIKT' is not an integer - this will probably not sort properly.
[5425] Utils.pm:193> WARN - month field 'May' in entry 'SDM' is not an integer - this will probably not sort properly.
[5428] Utils.pm:193> WARN - month field 'Apr' in entry 'MONTECARLO' is not an integer - this will probably not sort properly.
[5432] Utils.pm:193> WARN - month field 'Oct' in entry 'SUC_COMBINATION' is not an integer - this will probably not sort properly.
[5436] Utils.pm:193> WARN - month field 'Nov' in entry 'HADRONIZATION' is not an integer - this will probably not sort properly.
[5444] Utils.pm:193> WARN - month field 'Feb' in entry 'ASYMPTOTIC_LIMIT' is not an integer - this will probably not sort properly.
[5466] Utils.pm:193> WARN - month field 'Mar' in entry 'TAU21' is not an integer - this will probably not sort properly.
[5481] Utils.pm:193> WARN - month field 'aug' in entry 'LHC_MACHINE' is not an integer - this will probably not sort properly.
[5627] UCollate.pm:68> INFO - Overriding locale 'en-GB' defaults 'variable = shifted' with 'variable = non-ignorable'
[5627] UCollate.pm:68> INFO - Overriding locale 'en-GB' defaults 'normalization = NFD' with 'normalization = prenormalized'
[5627] Biber.pm:3921> INFO - Sorting list 'nty/global//global/global' of type 'entry' with template 'nty' and locale 'en-GB'
[5627] Biber.pm:3927> INFO - No sort tailoring available for locale 'en-GB'
[5781] bbl.pm:636> INFO - Writing 'thesis.bbl' with encoding 'UTF-8'
[13507] bbl.pm:739> INFO - Output to thesis.bbl
[13509] Biber.pm:110> INFO - WARNINGS: 13

View File

@ -1,4 +1,4 @@
This is LuaTeX, Version 1.10.0 (TeX Live 2019/Arch Linux) (format=lualatex 2019.8.29) 31 OCT 2019 19:46
This is LuaTeX, Version 1.10.0 (TeX Live 2019/Arch Linux) (format=lualatex 2019.8.29) 1 NOV 2019 11:54
restricted system commands enabled.
**thesis
(./thesis.tex
@ -48,7 +48,7 @@ Inserting `luaotfload.aux.set_capheight' at position 3 in `luaotfload.patch_font
'.
Inserting `luaotfload.rewrite_fontname' at position 4 in `luaotfload.patch_font'
.
luaotfload | main : initialization completed in 0.055 seconds
luaotfload | main : initialization completed in 0.051 seconds
(/usr/share/texmf-dist/tex/latex/base/article.cls
Document Class: article 2018/09/03 v1.4i Standard LaTeX document class
(/usr/share/texmf-dist/tex/latex/base/size12.clo
@ -2233,28 +2233,28 @@ LaTeX Font Info: Font shape `TU/TimesNewRoman(0)/bx/n' will be
<./figures/sm_wikipedia.pdf, id=120, 1014.37367pt x 927.15916pt>
File: ./figures/sm_wikipedia.pdf Graphic file (type pdf)
<use ./figures/sm_wikipedia.pdf>
Package luatex.def Info: ./figures/sm_wikipedia.pdf used on input line 294.
Package luatex.def Info: ./figures/sm_wikipedia.pdf used on input line 293.
(luatex.def) Requested size: 227.62057pt x 208.05006pt.
[2<./figures/sm_wikipedia.pdf>] [3] [4] [5] [6]
<./figures/cms_setup.png, id=371, 843.15pt x 596.2275pt>
<./figures/cms_setup.png, id=372, 843.15pt x 596.2275pt>
File: ./figures/cms_setup.png Graphic file (type png)
<use ./figures/cms_setup.png>
Package luatex.def Info: ./figures/cms_setup.png used on input line 579.
Package luatex.def Info: ./figures/cms_setup.png used on input line 578.
(luatex.def) Requested size: 455.25562pt x 321.93076pt.
<./figures/cms_coordinates.png, id=375, 2087.8pt x 1716.4125pt>
<./figures/cms_coordinates.png, id=376, 2087.8pt x 1716.4125pt>
File: ./figures/cms_coordinates.png Graphic file (type png)
<use ./figures/cms_coordinates.png>
Package luatex.def Info: ./figures/cms_coordinates.png used on input line 608.
Package luatex.def Info: ./figures/cms_coordinates.png used on input line 607.
(luatex.def) Requested size: 273.14381pt x 224.55573pt.
[7<./figures/cms_setup.png>] [8<./figures/cms_coordinates.png>] [9]
<./figures/antikt-comparision.png, id=415, 1134.2375pt x 827.09pt>
<./figures/antikt-comparision.png, id=419, 1134.2375pt x 827.09pt>
File: ./figures/antikt-comparision.png Graphic file (type png)
<use ./figures/antikt-comparision.png>
Package luatex.def Info: ./figures/antikt-comparision.png used on input line 72
6.
5.
(luatex.def) Requested size: 455.2446pt x 331.96596pt.
[10<./figures/antikt-comparision.png>] [11]
<./figures/cb_fit.pdf, id=443, 569.12625pt x 315.1775pt>
<./figures/cb_fit.pdf, id=450, 569.12625pt x 315.1775pt>
File: ./figures/cb_fit.pdf Graphic file (type pdf)
<use ./figures/cb_fit.pdf>
Package luatex.def Info: ./figures/cb_fit.pdf used on input line 853.
@ -2272,7 +2272,7 @@ converted-to.pdf>
_jets_stack-eps-converted-to.pdf ./figures/2016/v1_Cleaner_N_jets_stack.eps>
(epstopdf) \includegraphics on input line 906.
Package epstopdf Info: Output file is already uptodate.
<./figures/2016/v1_Cleaner_N_jets_stack-eps-converted-to.pdf, id=504, 569.12625p
<./figures/2016/v1_Cleaner_N_jets_stack-eps-converted-to.pdf, id=511, 569.12625p
t x 534.99875pt>
File: ./figures/2016/v1_Cleaner_N_jets_stack-eps-converted-to.pdf Graphic file (
type pdf)
@ -2291,7 +2291,7 @@ verted-to.pdf>
ts_stack-eps-converted-to.pdf ./figures/2016/v1_Njet_N_jets_stack.eps>
(epstopdf) \includegraphics on input line 909.
Package epstopdf Info: Output file is already uptodate.
<./figures/2016/v1_Njet_N_jets_stack-eps-converted-to.pdf, id=505, 569.12625pt x
<./figures/2016/v1_Njet_N_jets_stack-eps-converted-to.pdf, id=512, 569.12625pt x
534.99875pt>
File: ./figures/2016/v1_Njet_N_jets_stack-eps-converted-to.pdf Graphic file (typ
e pdf)
@ -2310,15 +2310,15 @@ eps-converted-to.pdf>
(epstopdf) Command: <repstopdf --outfile=./figures/combined/v1_Clean
er_N_jets_stack-eps-converted-to.pdf ./figures/combined/v1_Cleaner_N_jets_stack.
eps>
(epstopdf) \includegraphics on input line 915.
(epstopdf) \includegraphics on input line 916.
Package epstopdf Info: Output file is already uptodate.
<./figures/combined/v1_Cleaner_N_jets_stack-eps-converted-to.pdf, id=506, 569.12
<./figures/combined/v1_Cleaner_N_jets_stack-eps-converted-to.pdf, id=513, 569.12
625pt x 534.99875pt>
File: ./figures/combined/v1_Cleaner_N_jets_stack-eps-converted-to.pdf Graphic fi
le (type pdf)
<use ./figures/combined/v1_Cleaner_N_jets_stack-eps-converted-to.pdf>
Package luatex.def Info: ./figures/combined/v1_Cleaner_N_jets_stack-eps-converte
d-to.pdf used on input line 915.
d-to.pdf used on input line 916.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/combined/v1_Njet_N_jets_stack.eps
>
@ -2330,23 +2330,23 @@ Package epstopdf Info: Source file: <./figures/combined/v1_Njet_N_jets_stack.eps
(epstopdf) size: 93661 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/combined/v1_Njet_
N_jets_stack-eps-converted-to.pdf ./figures/combined/v1_Njet_N_jets_stack.eps>
(epstopdf) \includegraphics on input line 918.
(epstopdf) \includegraphics on input line 919.
Package epstopdf Info: Output file is already uptodate.
<./figures/combined/v1_Njet_N_jets_stack-eps-converted-to.pdf, id=507, 569.12625
<./figures/combined/v1_Njet_N_jets_stack-eps-converted-to.pdf, id=514, 569.12625
pt x 534.99875pt>
File: ./figures/combined/v1_Njet_N_jets_stack-eps-converted-to.pdf Graphic file
(type pdf)
<use ./figures/combined/v1_Njet_N_jets_stack-eps-converted-to.pdf>
Package luatex.def Info: ./figures/combined/v1_Njet_N_jets_stack-eps-converted-t
o.pdf used on input line 918.
o.pdf used on input line 919.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Overfull \hbox (2.0pt too wide) in paragraph at lines 902--922
Overfull \hbox (2.0pt too wide) in paragraph at lines 902--923
[]$ $[]$
[]
Overfull \hbox (2.0pt too wide) in paragraph at lines 902--922
Overfull \hbox (2.0pt too wide) in paragraph at lines 902--923
[]$ $[]$
[]
@ -2363,15 +2363,15 @@ rted-to.pdf>
(epstopdf) size: 17860 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/2016/v1_Njet_deta
_stack-eps-converted-to.pdf ./figures/2016/v1_Njet_deta_stack.eps>
(epstopdf) \includegraphics on input line 945.
(epstopdf) \includegraphics on input line 946.
Package epstopdf Info: Output file is already uptodate.
<./figures/2016/v1_Njet_deta_stack-eps-converted-to.pdf, id=600, 569.12625pt x 5
<./figures/2016/v1_Njet_deta_stack-eps-converted-to.pdf, id=607, 569.12625pt x 5
34.99875pt>
File: ./figures/2016/v1_Njet_deta_stack-eps-converted-to.pdf Graphic file (type
pdf)
<use ./figures/2016/v1_Njet_deta_stack-eps-converted-to.pdf>
Package luatex.def Info: ./figures/2016/v1_Njet_deta_stack-eps-converted-to.pdf
used on input line 945.
used on input line 946.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/combined/v1_Njet_deta_stack.eps>
(epstopdf) date: 2019-10-31 19:25:04
@ -2382,15 +2382,15 @@ onverted-to.pdf>
(epstopdf) size: 18052 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/combined/v1_Njet_
deta_stack-eps-converted-to.pdf ./figures/combined/v1_Njet_deta_stack.eps>
(epstopdf) \includegraphics on input line 948.
(epstopdf) \includegraphics on input line 949.
Package epstopdf Info: Output file is already uptodate.
<./figures/combined/v1_Njet_deta_stack-eps-converted-to.pdf, id=601, 569.12625pt
<./figures/combined/v1_Njet_deta_stack-eps-converted-to.pdf, id=608, 569.12625pt
x 534.99875pt>
File: ./figures/combined/v1_Njet_deta_stack-eps-converted-to.pdf Graphic file (t
ype pdf)
<use ./figures/combined/v1_Njet_deta_stack-eps-converted-to.pdf>
Package luatex.def Info: ./figures/combined/v1_Njet_deta_stack-eps-converted-to.
pdf used on input line 948.
pdf used on input line 949.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/2016/v1_Njet_invMass_stack.eps>
(epstopdf) date: 2019-10-31 19:06:12
@ -2401,15 +2401,15 @@ nverted-to.pdf>
(epstopdf) size: 95596 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/2016/v1_Njet_invM
ass_stack-eps-converted-to.pdf ./figures/2016/v1_Njet_invMass_stack.eps>
(epstopdf) \includegraphics on input line 955.
(epstopdf) \includegraphics on input line 956.
Package epstopdf Info: Output file is already uptodate.
<./figures/2016/v1_Njet_invMass_stack-eps-converted-to.pdf, id=602, 569.12625pt
<./figures/2016/v1_Njet_invMass_stack-eps-converted-to.pdf, id=609, 569.12625pt
x 534.99875pt>
File: ./figures/2016/v1_Njet_invMass_stack-eps-converted-to.pdf Graphic file (ty
pe pdf)
<use ./figures/2016/v1_Njet_invMass_stack-eps-converted-to.pdf>
Package luatex.def Info: ./figures/2016/v1_Njet_invMass_stack-eps-converted-to.p
df used on input line 955.
df used on input line 956.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/combined/v1_Njet_invMass_stack.ep
s>
@ -2422,15 +2422,15 @@ s-converted-to.pdf>
(epstopdf) Command: <repstopdf --outfile=./figures/combined/v1_Njet_
invMass_stack-eps-converted-to.pdf ./figures/combined/v1_Njet_invMass_stack.eps>
(epstopdf) \includegraphics on input line 958.
(epstopdf) \includegraphics on input line 959.
Package epstopdf Info: Output file is already uptodate.
<./figures/combined/v1_Njet_invMass_stack-eps-converted-to.pdf, id=603, 569.1262
<./figures/combined/v1_Njet_invMass_stack-eps-converted-to.pdf, id=610, 569.1262
5pt x 534.99875pt>
File: ./figures/combined/v1_Njet_invMass_stack-eps-converted-to.pdf Graphic file
(type pdf)
<use ./figures/combined/v1_Njet_invMass_stack-eps-converted-to.pdf>
Package luatex.def Info: ./figures/combined/v1_Njet_invMass_stack-eps-converted-
to.pdf used on input line 958.
to.pdf used on input line 959.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/2016/v1_Eta_invMass_stack.eps>
(epstopdf) date: 2019-10-31 19:20:37
@ -2441,15 +2441,15 @@ verted-to.pdf>
(epstopdf) size: 95149 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/2016/v1_Eta_invMa
ss_stack-eps-converted-to.pdf ./figures/2016/v1_Eta_invMass_stack.eps>
(epstopdf) \includegraphics on input line 965.
(epstopdf) \includegraphics on input line 966.
Package epstopdf Info: Output file is already uptodate.
<./figures/2016/v1_Eta_invMass_stack-eps-converted-to.pdf, id=604, 569.12625pt x
<./figures/2016/v1_Eta_invMass_stack-eps-converted-to.pdf, id=611, 569.12625pt x
534.99875pt>
File: ./figures/2016/v1_Eta_invMass_stack-eps-converted-to.pdf Graphic file (typ
e pdf)
<use ./figures/2016/v1_Eta_invMass_stack-eps-converted-to.pdf>
Package luatex.def Info: ./figures/2016/v1_Eta_invMass_stack-eps-converted-to.pd
f used on input line 965.
f used on input line 966.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/combined/v1_Eta_invMass_stack.eps
>
@ -2461,33 +2461,33 @@ Package epstopdf Info: Source file: <./figures/combined/v1_Eta_invMass_stack.eps
(epstopdf) size: 95369 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/combined/v1_Eta_i
nvMass_stack-eps-converted-to.pdf ./figures/combined/v1_Eta_invMass_stack.eps>
(epstopdf) \includegraphics on input line 968.
(epstopdf) \includegraphics on input line 969.
Package epstopdf Info: Output file is already uptodate.
<./figures/combined/v1_Eta_invMass_stack-eps-converted-to.pdf, id=605, 569.12625
<./figures/combined/v1_Eta_invMass_stack-eps-converted-to.pdf, id=612, 569.12625
pt x 534.99875pt>
File: ./figures/combined/v1_Eta_invMass_stack-eps-converted-to.pdf Graphic file
(type pdf)
<use ./figures/combined/v1_Eta_invMass_stack-eps-converted-to.pdf>
Package luatex.def Info: ./figures/combined/v1_Eta_invMass_stack-eps-converted-t
o.pdf used on input line 968.
o.pdf used on input line 969.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Overfull \hbox (2.0pt too wide) in paragraph at lines 941--972
Overfull \hbox (2.0pt too wide) in paragraph at lines 942--974
[]$ $[]$
[]
Overfull \hbox (2.0pt too wide) in paragraph at lines 941--972
Overfull \hbox (2.0pt too wide) in paragraph at lines 942--974
[]$ $[]$
[]
Overfull \hbox (2.0pt too wide) in paragraph at lines 941--972
Overfull \hbox (2.0pt too wide) in paragraph at lines 942--974
[]$ $[]$
[]
LaTeX Warning: Float too large for page by 12.17435pt on input line 974.
LaTeX Warning: Float too large for page by 13.72472pt on input line 976.
Package epstopdf Info: Source file: <./figures/2016/v1_Eta_invMass_stack.eps>
(epstopdf) date: 2019-10-31 19:20:37
@ -2498,13 +2498,13 @@ verted-to.pdf>
(epstopdf) size: 95149 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/2016/v1_Eta_invMa
ss_stack-eps-converted-to.pdf ./figures/2016/v1_Eta_invMass_stack.eps>
(epstopdf) \includegraphics on input line 993.
(epstopdf) \includegraphics on input line 995.
Package epstopdf Info: Output file is already uptodate.
File: ./figures/2016/v1_Eta_invMass_stack-eps-converted-to.pdf Graphic file (typ
e pdf)
<use ./figures/2016/v1_Eta_invMass_stack-eps-converted-to.pdf>
Package luatex.def Info: ./figures/2016/v1_Eta_invMass_stack-eps-converted-to.pd
f used on input line 993.
f used on input line 995.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/2016/v1_invmass_invMass_stack.eps
>
@ -2516,15 +2516,15 @@ Package epstopdf Info: Source file: <./figures/2016/v1_invmass_invMass_stack.eps
(epstopdf) size: 95187 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/2016/v1_invmass_i
nvMass_stack-eps-converted-to.pdf ./figures/2016/v1_invmass_invMass_stack.eps>
(epstopdf) \includegraphics on input line 996.
(epstopdf) \includegraphics on input line 998.
Package epstopdf Info: Output file is already uptodate.
<./figures/2016/v1_invmass_invMass_stack-eps-converted-to.pdf, id=607, 569.12625
<./figures/2016/v1_invmass_invMass_stack-eps-converted-to.pdf, id=614, 569.12625
pt x 534.99875pt>
File: ./figures/2016/v1_invmass_invMass_stack-eps-converted-to.pdf Graphic file
(type pdf)
<use ./figures/2016/v1_invmass_invMass_stack-eps-converted-to.pdf>
Package luatex.def Info: ./figures/2016/v1_invmass_invMass_stack-eps-converted-t
o.pdf used on input line 996.
o.pdf used on input line 998.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/combined/v1_Eta_invMass_stack.eps
>
@ -2536,13 +2536,13 @@ Package epstopdf Info: Source file: <./figures/combined/v1_Eta_invMass_stack.eps
(epstopdf) size: 95369 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/combined/v1_Eta_i
nvMass_stack-eps-converted-to.pdf ./figures/combined/v1_Eta_invMass_stack.eps>
(epstopdf) \includegraphics on input line 1002.
(epstopdf) \includegraphics on input line 1004.
Package epstopdf Info: Output file is already uptodate.
File: ./figures/combined/v1_Eta_invMass_stack-eps-converted-to.pdf Graphic file
(type pdf)
<use ./figures/combined/v1_Eta_invMass_stack-eps-converted-to.pdf>
Package luatex.def Info: ./figures/combined/v1_Eta_invMass_stack-eps-converted-t
o.pdf used on input line 1002.
o.pdf used on input line 1004.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/combined/v1_invmass_invMass_stack
.eps>
@ -2555,23 +2555,23 @@ Package epstopdf Info: Source file: <./figures/combined/v1_invmass_invMass_stack
(epstopdf) Command: <repstopdf --outfile=./figures/combined/v1_invma
ss_invMass_stack-eps-converted-to.pdf ./figures/combined/v1_invmass_invMass_stac
k.eps>
(epstopdf) \includegraphics on input line 1005.
(epstopdf) \includegraphics on input line 1007.
Package epstopdf Info: Output file is already uptodate.
<./figures/combined/v1_invmass_invMass_stack-eps-converted-to.pdf, id=608, 569.1
<./figures/combined/v1_invmass_invMass_stack-eps-converted-to.pdf, id=615, 569.1
2625pt x 534.99875pt>
File: ./figures/combined/v1_invmass_invMass_stack-eps-converted-to.pdf Graphic f
ile (type pdf)
<use ./figures/combined/v1_invmass_invMass_stack-eps-converted-to.pdf>
Package luatex.def Info: ./figures/combined/v1_invmass_invMass_stack-eps-convert
ed-to.pdf used on input line 1005.
ed-to.pdf used on input line 1007.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Overfull \hbox (2.0pt too wide) in paragraph at lines 989--1010
Overfull \hbox (2.0pt too wide) in paragraph at lines 991--1012
[]$ $[]$
[]
Overfull \hbox (2.0pt too wide) in paragraph at lines 989--1010
Overfull \hbox (2.0pt too wide) in paragraph at lines 991--1012
[]$ $[]$
[]
@ -2584,15 +2584,15 @@ onverted-to.pdf>
(epstopdf) size: 11133 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/2016/DATA/v1_invm
ass_N_jets-eps-converted-to.pdf ./figures/2016/DATA/v1_invmass_N_jets.eps>
(epstopdf) \includegraphics on input line 1057.
(epstopdf) \includegraphics on input line 1059.
Package epstopdf Info: Output file is already uptodate.
<./figures/2016/DATA/v1_invmass_N_jets-eps-converted-to.pdf, id=610, 569.12625pt
<./figures/2016/DATA/v1_invmass_N_jets-eps-converted-to.pdf, id=618, 569.12625pt
x 534.99875pt>
File: ./figures/2016/DATA/v1_invmass_N_jets-eps-converted-to.pdf Graphic file (t
ype pdf)
<use ./figures/2016/DATA/v1_invmass_N_jets-eps-converted-to.pdf>
Package luatex.def Info: ./figures/2016/DATA/v1_invmass_N_jets-eps-converted-to.
pdf used on input line 1057.
pdf used on input line 1059.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/combined/DATA/v1_invmass_N_jets.e
ps>
@ -2605,15 +2605,15 @@ ps-converted-to.pdf>
(epstopdf) Command: <repstopdf --outfile=./figures/combined/DATA/v1_
invmass_N_jets-eps-converted-to.pdf ./figures/combined/DATA/v1_invmass_N_jets.ep
s>
(epstopdf) \includegraphics on input line 1060.
(epstopdf) \includegraphics on input line 1062.
Package epstopdf Info: Output file is already uptodate.
<./figures/combined/DATA/v1_invmass_N_jets-eps-converted-to.pdf, id=611, 569.126
<./figures/combined/DATA/v1_invmass_N_jets-eps-converted-to.pdf, id=619, 569.126
25pt x 534.99875pt>
File: ./figures/combined/DATA/v1_invmass_N_jets-eps-converted-to.pdf Graphic fil
e (type pdf)
<use ./figures/combined/DATA/v1_invmass_N_jets-eps-converted-to.pdf>
Package luatex.def Info: ./figures/combined/DATA/v1_invmass_N_jets-eps-converted
-to.pdf used on input line 1060.
-to.pdf used on input line 1062.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/2016/DATA/v1_invmass_deta.eps>
(epstopdf) date: 2019-10-31 19:20:37
@ -2624,15 +2624,15 @@ verted-to.pdf>
(epstopdf) size: 13146 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/2016/DATA/v1_invm
ass_deta-eps-converted-to.pdf ./figures/2016/DATA/v1_invmass_deta.eps>
(epstopdf) \includegraphics on input line 1063.
(epstopdf) \includegraphics on input line 1065.
Package epstopdf Info: Output file is already uptodate.
<./figures/2016/DATA/v1_invmass_deta-eps-converted-to.pdf, id=612, 569.12625pt x
<./figures/2016/DATA/v1_invmass_deta-eps-converted-to.pdf, id=620, 569.12625pt x
534.99875pt>
File: ./figures/2016/DATA/v1_invmass_deta-eps-converted-to.pdf Graphic file (typ
e pdf)
<use ./figures/2016/DATA/v1_invmass_deta-eps-converted-to.pdf>
Package luatex.def Info: ./figures/2016/DATA/v1_invmass_deta-eps-converted-to.pd
f used on input line 1063.
f used on input line 1065.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/combined/DATA/v1_invmass_deta.eps
>
@ -2644,15 +2644,15 @@ Package epstopdf Info: Source file: <./figures/combined/DATA/v1_invmass_deta.eps
(epstopdf) size: 13280 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/combined/DATA/v1_
invmass_deta-eps-converted-to.pdf ./figures/combined/DATA/v1_invmass_deta.eps>
(epstopdf) \includegraphics on input line 1066.
(epstopdf) \includegraphics on input line 1068.
Package epstopdf Info: Output file is already uptodate.
<./figures/combined/DATA/v1_invmass_deta-eps-converted-to.pdf, id=613, 569.12625
<./figures/combined/DATA/v1_invmass_deta-eps-converted-to.pdf, id=621, 569.12625
pt x 534.99875pt>
File: ./figures/combined/DATA/v1_invmass_deta-eps-converted-to.pdf Graphic file
(type pdf)
<use ./figures/combined/DATA/v1_invmass_deta-eps-converted-to.pdf>
Package luatex.def Info: ./figures/combined/DATA/v1_invmass_deta-eps-converted-t
o.pdf used on input line 1066.
o.pdf used on input line 1068.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/2016/DATA/v1_invmass_invMass.eps>
@ -2664,15 +2664,15 @@ converted-to.pdf>
(epstopdf) size: 13929 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/2016/DATA/v1_invm
ass_invMass-eps-converted-to.pdf ./figures/2016/DATA/v1_invmass_invMass.eps>
(epstopdf) \includegraphics on input line 1069.
(epstopdf) \includegraphics on input line 1071.
Package epstopdf Info: Output file is already uptodate.
<./figures/2016/DATA/v1_invmass_invMass-eps-converted-to.pdf, id=614, 569.12625p
<./figures/2016/DATA/v1_invmass_invMass-eps-converted-to.pdf, id=622, 569.12625p
t x 534.99875pt>
File: ./figures/2016/DATA/v1_invmass_invMass-eps-converted-to.pdf Graphic file (
type pdf)
<use ./figures/2016/DATA/v1_invmass_invMass-eps-converted-to.pdf>
Package luatex.def Info: ./figures/2016/DATA/v1_invmass_invMass-eps-converted-to
.pdf used on input line 1069.
.pdf used on input line 1071.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/combined/DATA/v1_invmass_invMass.
eps>
@ -2685,33 +2685,33 @@ eps-converted-to.pdf>
(epstopdf) Command: <repstopdf --outfile=./figures/combined/DATA/v1_
invmass_invMass-eps-converted-to.pdf ./figures/combined/DATA/v1_invmass_invMass.
eps>
(epstopdf) \includegraphics on input line 1072.
(epstopdf) \includegraphics on input line 1074.
Package epstopdf Info: Output file is already uptodate.
<./figures/combined/DATA/v1_invmass_invMass-eps-converted-to.pdf, id=615, 569.12
<./figures/combined/DATA/v1_invmass_invMass-eps-converted-to.pdf, id=623, 569.12
625pt x 534.99875pt>
File: ./figures/combined/DATA/v1_invmass_invMass-eps-converted-to.pdf Graphic fi
le (type pdf)
<use ./figures/combined/DATA/v1_invmass_invMass-eps-converted-to.pdf>
Package luatex.def Info: ./figures/combined/DATA/v1_invmass_invMass-eps-converte
d-to.pdf used on input line 1072.
d-to.pdf used on input line 1074.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Overfull \hbox (2.0pt too wide) in paragraph at lines 1050--1074
Overfull \hbox (2.0pt too wide) in paragraph at lines 1052--1076
[]$[]$ $[]$
[]
Overfull \hbox (2.0pt too wide) in paragraph at lines 1050--1074
Overfull \hbox (2.0pt too wide) in paragraph at lines 1052--1076
[]$ $[]$
[]
Overfull \hbox (2.0pt too wide) in paragraph at lines 1050--1074
Overfull \hbox (2.0pt too wide) in paragraph at lines 1052--1076
[]$ $[]$
[]
Overfull \hbox (2.0pt too wide) in paragraph at lines 1050--1074
Overfull \hbox (2.0pt too wide) in paragraph at lines 1052--1076
[]$ $[]$
[]
@ -2737,15 +2737,15 @@ _1-eps-converted-to.pdf>
(epstopdf) Command: <repstopdf --outfile=./figures/2016/sideband/v1_
SDM_SoftDropMass_1-eps-converted-to.pdf ./figures/2016/sideband/v1_SDM_SoftDropM
ass_1.eps>
(epstopdf) \includegraphics on input line 1100.
(epstopdf) \includegraphics on input line 1102.
Package epstopdf Info: Output file is already uptodate.
<./figures/2016/sideband/v1_SDM_SoftDropMass_1-eps-converted-to.pdf, id=880, 569
<./figures/2016/sideband/v1_SDM_SoftDropMass_1-eps-converted-to.pdf, id=889, 569
.12625pt x 534.99875pt>
File: ./figures/2016/sideband/v1_SDM_SoftDropMass_1-eps-converted-to.pdf Graphic
file (type pdf)
<use ./figures/2016/sideband/v1_SDM_SoftDropMass_1-eps-converted-to.pdf>
Package luatex.def Info: ./figures/2016/sideband/v1_SDM_SoftDropMass_1-eps-conve
rted-to.pdf used on input line 1100.
rted-to.pdf used on input line 1102.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/2016/sideband/v1_SDM_invMass.eps>
@ -2757,15 +2757,15 @@ converted-to.pdf>
(epstopdf) size: 14209 bytes
(epstopdf) Command: <repstopdf --outfile=./figures/2016/sideband/v1_
SDM_invMass-eps-converted-to.pdf ./figures/2016/sideband/v1_SDM_invMass.eps>
(epstopdf) \includegraphics on input line 1103.
(epstopdf) \includegraphics on input line 1105.
Package epstopdf Info: Output file is already uptodate.
<./figures/2016/sideband/v1_SDM_invMass-eps-converted-to.pdf, id=881, 569.12625p
<./figures/2016/sideband/v1_SDM_invMass-eps-converted-to.pdf, id=890, 569.12625p
t x 534.99875pt>
File: ./figures/2016/sideband/v1_SDM_invMass-eps-converted-to.pdf Graphic file (
type pdf)
<use ./figures/2016/sideband/v1_SDM_invMass-eps-converted-to.pdf>
Package luatex.def Info: ./figures/2016/sideband/v1_SDM_invMass-eps-converted-to
.pdf used on input line 1103.
.pdf used on input line 1105.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/combined/sideband/v1_SDM_SoftDrop
Mass_1.eps>
@ -2778,15 +2778,15 @@ Mass_1-eps-converted-to.pdf>
(epstopdf) Command: <repstopdf --outfile=./figures/combined/sideband
/v1_SDM_SoftDropMass_1-eps-converted-to.pdf ./figures/combined/sideband/v1_SDM_S
oftDropMass_1.eps>
(epstopdf) \includegraphics on input line 1109.
(epstopdf) \includegraphics on input line 1111.
Package epstopdf Info: Output file is already uptodate.
<./figures/combined/sideband/v1_SDM_SoftDropMass_1-eps-converted-to.pdf, id=882,
<./figures/combined/sideband/v1_SDM_SoftDropMass_1-eps-converted-to.pdf, id=891,
569.12625pt x 534.99875pt>
File: ./figures/combined/sideband/v1_SDM_SoftDropMass_1-eps-converted-to.pdf Gra
phic file (type pdf)
<use ./figures/combined/sideband/v1_SDM_SoftDropMass_1-eps-converted-to.pdf>
Package luatex.def Info: ./figures/combined/sideband/v1_SDM_SoftDropMass_1-eps-c
onverted-to.pdf used on input line 1109.
onverted-to.pdf used on input line 1111.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Package epstopdf Info: Source file: <./figures/combined/sideband/v1_SDM_invMass.
eps>
@ -2799,23 +2799,23 @@ eps-converted-to.pdf>
(epstopdf) Command: <repstopdf --outfile=./figures/combined/sideband
/v1_SDM_invMass-eps-converted-to.pdf ./figures/combined/sideband/v1_SDM_invMass.
eps>
(epstopdf) \includegraphics on input line 1112.
(epstopdf) \includegraphics on input line 1114.
Package epstopdf Info: Output file is already uptodate.
<./figures/combined/sideband/v1_SDM_invMass-eps-converted-to.pdf, id=883, 569.12
<./figures/combined/sideband/v1_SDM_invMass-eps-converted-to.pdf, id=892, 569.12
625pt x 534.99875pt>
File: ./figures/combined/sideband/v1_SDM_invMass-eps-converted-to.pdf Graphic fi
le (type pdf)
<use ./figures/combined/sideband/v1_SDM_invMass-eps-converted-to.pdf>
Package luatex.def Info: ./figures/combined/sideband/v1_SDM_invMass-eps-converte
d-to.pdf used on input line 1112.
d-to.pdf used on input line 1114.
(luatex.def) Requested size: 227.6204pt x 213.9712pt.
Overfull \hbox (2.0pt too wide) in paragraph at lines 1096--1114
Overfull \hbox (2.0pt too wide) in paragraph at lines 1098--1116
[]$ $[]$
[]
Overfull \hbox (2.0pt too wide) in paragraph at lines 1096--1114
Overfull \hbox (2.0pt too wide) in paragraph at lines 1098--1116
[]$ $[]$
[]
@ -2823,183 +2823,194 @@ Overfull \hbox (2.0pt too wide) in paragraph at lines 1096--1114
s/2016/sideband/v1_SDM_invMass-eps-converted-to.pdf><./figures/combined/sideband
/v1_SDM_SoftDropMass_1-eps-converted-to.pdf><./figures/combined/sideband/v1_SDM_
invMass-eps-converted-to.pdf>] [20]
<./figures/deep_ak8.pdf, id=934, 569.12625pt x 546.04pt>
<./figures/deep_ak8.pdf, id=943, 569.12625pt x 546.04pt>
File: ./figures/deep_ak8.pdf Graphic file (type pdf)
<use ./figures/deep_ak8.pdf>
Package luatex.def Info: ./figures/deep_ak8.pdf used on input line 1202.
Package luatex.def Info: ./figures/deep_ak8.pdf used on input line 1203.
(luatex.def) Requested size: 273.16013pt x 262.07956pt.
[21<./figures/deep_ak8.pdf>]
<./figures/sig-db.pdf, id=991, 569.12625pt x 385.44pt>
<./figures/sig-db.pdf, id=1002, 569.12625pt x 385.44pt>
File: ./figures/sig-db.pdf Graphic file (type pdf)
<use ./figures/sig-db.pdf>
Package luatex.def Info: ./figures/sig-db.pdf used on input line 1264.
Package luatex.def Info: ./figures/sig-db.pdf used on input line 1267.
(luatex.def) Requested size: 227.6204pt x 154.15562pt.
<./figures/sig-tau.pdf, id=992, 569.12625pt x 385.44pt>
<./figures/sig-tau.pdf, id=1003, 569.12625pt x 385.44pt>
File: ./figures/sig-tau.pdf Graphic file (type pdf)
<use ./figures/sig-tau.pdf>
Package luatex.def Info: ./figures/sig-tau.pdf used on input line 1267.
Package luatex.def Info: ./figures/sig-tau.pdf used on input line 1270.
(luatex.def) Requested size: 227.6204pt x 154.15562pt.
Overfull \hbox (2.0pt too wide) in paragraph at lines 1263--1269
Overfull \hbox (2.0pt too wide) in paragraph at lines 1266--1272
[]$[]$ $[]$
[]
[22<./figures/sig-db.pdf><./figures/sig-tau.pdf>] [23] [24] [25]
<./figures/results/brazilianFlag_QtoqW_2016tau_13TeV.pdf, id=1115, 569.12625pt x
[22<./figures/sig-db.pdf><./figures/sig-tau.pdf>] [23] [24]
<./figures/results/brazilianFlag_QtoqW_2016tau_13TeV.pdf, id=1123, 569.12625pt x
408.52625pt>
File: ./figures/results/brazilianFlag_QtoqW_2016tau_13TeV.pdf Graphic file (type
pdf)
<use ./figures/results/brazilianFlag_QtoqW_2016tau_13TeV.pdf>
Package luatex.def Info: ./figures/results/brazilianFlag_QtoqW_2016tau_13TeV.pdf
used on input line 1416.
used on input line 1417.
(luatex.def) Requested size: 227.6204pt x 163.3889pt.
LaTeX Font Info: Font shape `TU/TimesNewRoman(0)/m/n' will be
(Font) scaled to size 10.0pt on input line 1416.
<./figures/results/brazilianFlag_QtoqW_2016db_13TeV.pdf, id=1116, 569.12625pt x
(Font) scaled to size 10.0pt on input line 1417.
<./figures/results/brazilianFlag_QtoqW_2016db_13TeV.pdf, id=1124, 569.12625pt x
408.52625pt>
File: ./figures/results/brazilianFlag_QtoqW_2016db_13TeV.pdf Graphic file (type
pdf)
<use ./figures/results/brazilianFlag_QtoqW_2016db_13TeV.pdf>
Package luatex.def Info: ./figures/results/brazilianFlag_QtoqW_2016db_13TeV.pdf
used on input line 1419.
used on input line 1420.
(luatex.def) Requested size: 227.6204pt x 163.3889pt.
<./figures/results/brazilianFlag_QtoqZ_2016tau_13TeV.pdf, id=1117, 569.12625pt x
<./figures/results/brazilianFlag_QtoqZ_2016tau_13TeV.pdf, id=1125, 569.12625pt x
408.52625pt>
File: ./figures/results/brazilianFlag_QtoqZ_2016tau_13TeV.pdf Graphic file (type
pdf)
<use ./figures/results/brazilianFlag_QtoqZ_2016tau_13TeV.pdf>
Package luatex.def Info: ./figures/results/brazilianFlag_QtoqZ_2016tau_13TeV.pdf
used on input line 1422.
used on input line 1423.
(luatex.def) Requested size: 227.6204pt x 163.3889pt.
<./figures/results/brazilianFlag_QtoqZ_2016db_13TeV.pdf, id=1118, 569.12625pt x
<./figures/results/brazilianFlag_QtoqZ_2016db_13TeV.pdf, id=1126, 569.12625pt x
408.52625pt>
File: ./figures/results/brazilianFlag_QtoqZ_2016db_13TeV.pdf Graphic file (type
pdf)
<use ./figures/results/brazilianFlag_QtoqZ_2016db_13TeV.pdf>
Package luatex.def Info: ./figures/results/brazilianFlag_QtoqZ_2016db_13TeV.pdf
used on input line 1425.
used on input line 1426.
(luatex.def) Requested size: 227.6204pt x 163.3889pt.
[26] [27<./figures/results/brazilianFlag_QtoqW_2016tau_13TeV.pdf><./figures/res
[25] [26<./figures/results/brazilianFlag_QtoqW_2016tau_13TeV.pdf><./figures/res
ults/brazilianFlag_QtoqW_2016db_13TeV.pdf><./figures/results/brazilianFlag_QtoqZ
_2016tau_13TeV.pdf><./figures/results/brazilianFlag_QtoqZ_2016db_13TeV.pdf>]
<./figures/results/prev_qW.png, id=1317, 1032.85875pt x 751.80875pt>
<./figures/results/prev_qW.png, id=1326, 1032.85875pt x 751.80875pt>
File: ./figures/results/prev_qW.png Graphic file (type png)
<use ./figures/results/prev_qW.png>
Package luatex.def Info: ./figures/results/prev_qW.png used on input line 1459.
Package luatex.def Info: ./figures/results/prev_qW.png used on input line 1460.
(luatex.def) Requested size: 227.62363pt x 165.68523pt.
<./figures/results/prev_qZ.png, id=1318, 1300.86pt x 934.49126pt>
<./figures/results/prev_qZ.png, id=1327, 1300.86pt x 934.49126pt>
File: ./figures/results/prev_qZ.png Graphic file (type png)
<use ./figures/results/prev_qZ.png>
Package luatex.def Info: ./figures/results/prev_qZ.png used on input line 1462.
Package luatex.def Info: ./figures/results/prev_qZ.png used on input line 1463.
(luatex.def) Requested size: 227.61421pt x 163.5099pt.
Overfull \hbox (2.0pt too wide) in paragraph at lines 1458--1465
Overfull \hbox (2.0pt too wide) in paragraph at lines 1459--1466
[]$[]$ $[]$
[]
<./figures/results/brazilianFlag_QtoqW_Combinedtau_13TeV.pdf, id=1323, 569.12625
<./figures/results/brazilianFlag_QtoqW_Combinedtau_13TeV.pdf, id=1332, 569.12625
pt x 408.52625pt>
File: ./figures/results/brazilianFlag_QtoqW_Combinedtau_13TeV.pdf Graphic file (
type pdf)
<use ./figures/results/brazilianFlag_QtoqW_Combinedtau_13TeV.pdf>
Package luatex.def Info: ./figures/results/brazilianFlag_QtoqW_Combinedtau_13TeV
.pdf used on input line 1512.
.pdf used on input line 1513.
(luatex.def) Requested size: 227.6204pt x 163.3889pt.
<./figures/results/brazilianFlag_QtoqW_Combineddb_13TeV.pdf, id=1324, 569.12625p
<./figures/results/brazilianFlag_QtoqW_Combineddb_13TeV.pdf, id=1333, 569.12625p
t x 408.52625pt>
File: ./figures/results/brazilianFlag_QtoqW_Combineddb_13TeV.pdf Graphic file (t
ype pdf)
<use ./figures/results/brazilianFlag_QtoqW_Combineddb_13TeV.pdf>
Package luatex.def Info: ./figures/results/brazilianFlag_QtoqW_Combineddb_13TeV.
pdf used on input line 1515.
pdf used on input line 1516.
(luatex.def) Requested size: 227.6204pt x 163.3889pt.
<./figures/results/brazilianFlag_QtoqZ_Combinedtau_13TeV.pdf, id=1325, 569.12625
<./figures/results/brazilianFlag_QtoqZ_Combinedtau_13TeV.pdf, id=1334, 569.12625
pt x 408.52625pt>
File: ./figures/results/brazilianFlag_QtoqZ_Combinedtau_13TeV.pdf Graphic file (
type pdf)
<use ./figures/results/brazilianFlag_QtoqZ_Combinedtau_13TeV.pdf>
Package luatex.def Info: ./figures/results/brazilianFlag_QtoqZ_Combinedtau_13TeV
.pdf used on input line 1518.
.pdf used on input line 1519.
(luatex.def) Requested size: 227.6204pt x 163.3889pt.
<./figures/results/brazilianFlag_QtoqZ_Combineddb_13TeV.pdf, id=1326, 569.12625p
<./figures/results/brazilianFlag_QtoqZ_Combineddb_13TeV.pdf, id=1335, 569.12625p
t x 408.52625pt>
File: ./figures/results/brazilianFlag_QtoqZ_Combineddb_13TeV.pdf Graphic file (t
ype pdf)
<use ./figures/results/brazilianFlag_QtoqZ_Combineddb_13TeV.pdf>
Package luatex.def Info: ./figures/results/brazilianFlag_QtoqZ_Combineddb_13TeV.
pdf used on input line 1521.
pdf used on input line 1522.
(luatex.def) Requested size: 227.6204pt x 163.3889pt.
[28<./figures/results/prev_qW.png><./figures/results/prev_qZ.png>] [29<./figures
[27<./figures/results/prev_qW.png><./figures/results/prev_qZ.png>] [28<./figures
/results/brazilianFlag_QtoqW_Combinedtau_13TeV.pdf><./figures/results/brazilianF
lag_QtoqW_Combineddb_13TeV.pdf><./figures/results/brazilianFlag_QtoqZ_Combinedta
u_13TeV.pdf><./figures/results/brazilianFlag_QtoqZ_Combineddb_13TeV.pdf>]
<./figures/limit_comp_w.pdf, id=1527, 569.12625pt x 385.44pt>
[29]
<./figures/limit_comp_w.pdf, id=1543, 569.12625pt x 385.44pt>
File: ./figures/limit_comp_w.pdf Graphic file (type pdf)
<use ./figures/limit_comp_w.pdf>
Package luatex.def Info: ./figures/limit_comp_w.pdf used on input line 1563.
Package luatex.def Info: ./figures/limit_comp_w.pdf used on input line 1564.
(luatex.def) Requested size: 227.6204pt x 154.15562pt.
<./figures/limit_comp_z.pdf, id=1528, 569.12625pt x 385.44pt>
<./figures/limit_comp_z.pdf, id=1544, 569.12625pt x 385.44pt>
File: ./figures/limit_comp_z.pdf Graphic file (type pdf)
<use ./figures/limit_comp_z.pdf>
Package luatex.def Info: ./figures/limit_comp_z.pdf used on input line 1566.
Package luatex.def Info: ./figures/limit_comp_z.pdf used on input line 1567.
(luatex.def) Requested size: 227.6204pt x 154.15562pt.
Overfull \hbox (2.0pt too wide) in paragraph at lines 1562--1569
Overfull \hbox (2.0pt too wide) in paragraph at lines 1563--1570
[]$[]$ $[]$
[]
<./figures/limit_comp_2018.pdf, id=1529, 569.12625pt x 385.44pt>
<./figures/limit_comp_2018.pdf, id=1545, 569.12625pt x 385.44pt>
File: ./figures/limit_comp_2018.pdf Graphic file (type pdf)
<use ./figures/limit_comp_2018.pdf>
Package luatex.def Info: ./figures/limit_comp_2018.pdf used on input line 1580.
(luatex.def) Requested size: 318.68248pt x 215.82729pt.
[30<./figures/limit_comp_w.pdf><./figures/limit_comp_z.pdf>] [31<./figures/limit
_comp_2018.pdf>] [32
(luatex.def) Requested size: 250.39027pt x 169.57648pt.
[30<./figures/limit_comp_w.pdf><./figures/limit_comp_z.pdf><./figures/limit_comp
_2018.pdf>] [31
]
LaTeX Font Info: Font shape `TU/TimesNewRoman(0)/m/it' will be
(Font) scaled to size 12.0pt on input line 1636.
(Font) scaled to size 12.0pt on input line 1640.
Underfull \hbox (badness 10000) in paragraph at lines 1637--1637
Underfull \hbox (badness 10000) in paragraph at lines 1641--1641
[]\TU/TimesNewRoman(0)/m/n/12 Florian Beau-dette. The CMS Particle Flow Al
-gorithm. In: \TU/TimesNewRoman(0)/m/it/12 arXiv e-prints\TU/TimesNewRoman(0
)/m/n/12 ,
[]
[33] [34] [35] [36] [37]
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 1860.
Package atveryend Info: Empty hook `AfterLastShipout' on input line 1860.
[32] [33] [34] [35] [36] [37] [38]
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 1884.
Package atveryend Info: Empty hook `AfterLastShipout' on input line 1884.
(./thesis.aux)
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 1860.
Package atveryend Info: Empty hook `AtEndAfterFileList' on input line 1860.
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 1884.
Package atveryend Info: Empty hook `AtEndAfterFileList' on input line 1884.
LaTeX Warning: There were undefined references.
LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right.
Package biblatex Warning: Please rerun LaTeX.
Package logreq Info: Writing requests to 'thesis.run.xml'.
\openout1 = thesis.run.xml
)
Here is how much of LuaTeX's memory you used:
55131 strings out of 494300
55151 strings out of 494300
125171,2848258 words of node,token memory allocated
766 words of node memory still in use:
7 hlist, 2 vlist, 2 rule, 5 glue, 4 kern, 1 glyph, 23 attribute, 78 glue_spec
, 23 attribute_list, 1 write, 9 pdf_action nodes
avail lists: 1:5,2:3416,3:687,4:72,5:167,6:62,7:4973,8:120,9:486,10:20,11:299
806 words of node memory still in use:
7 hlist, 2 vlist, 2 rule, 5 glue, 4 kern, 1 glyph, 27 attribute, 78 glue_spec
, 27 attribute_list, 1 write, 13 pdf_action nodes
avail lists: 1:5,2:3428,3:694,4:73,5:167,6:58,7:5168,8:126,9:533,10:20,11:314
57122 multiletter control sequences out of 65536+600000
194 fonts using 58252903 bytes
57134 multiletter control sequences out of 65536+600000
194 fonts using 58252527 bytes
74i,21n,118p,1009b,2382s stack positions out of 5000i,500n,10000p,200000b,100000s
</opt/texmf-dist/fonts/opentype/public/lm/lmmono12-regular.otf></usr/share/fonts
/TTF/timesi.ttf></opt/texmf-dist/fonts/opentype/public/lm-math/latinmodern-math.
otf></opt/texmf-dist/fonts/opentype/public/lm-math/latinmodern-math.otf></usr/sh
are/fonts/TTF/times.ttf></opt/texmf-dist/fonts/opentype/public/lm-math/latinmode
rn-math.otf></usr/share/fonts/TTF/times.ttf></usr/share/fonts/TTF/timesbd.ttf>
Output written on thesis.pdf (43 pages, 2347493 bytes).
Output written on thesis.pdf (44 pages, 2352615 bytes).
PDF statistics: 1929 PDF objects out of 2073 (max. 8388607)
1287 compressed objects within 13 object streams
186 named destinations out of 1000 (max. 131072)
PDF statistics: 1959 PDF objects out of 2073 (max. 8388607)
1315 compressed objects within 14 object streams
194 named destinations out of 1000 (max. 131072)
312 words of extra memory for PDF output out of 10000 (max. 100000000)

223
thesis.md
View File

@ -9,7 +9,7 @@ header-includes: |
\usepackage{csquotes}
\usepackage{abstract}
\pagenumbering{gobble}
\setlength{\parskip}{0.5em}
\setlength{\parskip}{0.4em}
\bibliographystyle{lucas_unsrt}
documentclass: article
geometry:
@ -77,7 +77,7 @@ to a mass of 6.1\ TeV (qW) resp. 5.5\ TeV (qZ) with a confidence level of 95 \%.
the limits found by a previous research of data with an integrated luminosity of $\SI{35.92}{\per\femto\barn}$ collected
by the CMS experiment in 2016, excluding the q* particle up to a mass of 5.0\ TeV resp. 4.7\ TeV. The DeepAK8 tagger is
found to currently be at the same level as the N-subjettiness tagger, giving a $\SI{0.1}{\tera\eV}$ better result for
the decay to qW but a by $\SI{0.6}{\tera\eV}$ worse one for the decay to qZ. By optimizing the neural network's training
the decay to qW but a by $\SI{0.5}{\tera\eV}$ worse one for the decay to qZ. By optimising the neural network's training
for the datasets of 2016, 2017 and 2018, the sensitivity can likely be improved.
\end{abstract}
@ -97,7 +97,7 @@ Tagger verglichen. Im Ergebnis kann keine signifikante Abweichung vom Standardmo
wird mit einem Konfidenzniveau von 95 \% bis zu einer Masse von 6.1\ TeV (qW) bzw. 5.5\ TeV (qZ) ausgeschlossen. Das Limit
liegt etwa 1\ TeV höher, als das anhand des $\SI{35.92}{\per\femto\barn}$ großen Datensatzes von 2016 gefundene von 5.0
TeV bzw. 4.7\ TeV. Beim Zerfall zu qW erzielt der DeepAK8 Tagger ein um $\SI{0.1}{\tera\eV}$ besseres Ergebnis, als der
N-Subjettiness Tagger, beim Zerfall zu qZ jedoch ein um $\SI{0.6}{\tera\eV}$ schlechteres. Durch Verbesserung des
N-Subjettiness Tagger, beim Zerfall zu qZ jedoch ein um $\SI{0.5}{\tera\eV}$ schlechteres. Durch Verbesserung des
Trainings des neuronalen Netzwerkes für die drei Datensätze von 2016, 2017 und 2018, gibt es aber noch Potential die
Sensitivität zu verbessern.
@ -162,13 +162,13 @@ integer but so far is only known to be one for fermions and either one (gauge bo
bosons. Fermions are further classified into quarks and leptons.
Quarks and leptons can also be categorized into three generations, each of which contains two particles, also called
flavours. For leptons, the three generations each consist of a charged lepton and its corresponding neutrino, namely the
electron, the muon and the tau. The three quark generations consist of first, the up and down, second, the charm and
strange, and third, the top and bottom quark. A full list of particles of the standard model can be found in [@fig:sm].
Furthermore, all fermions have an associated anti particle with reversed charge. Bound states of multiple quarks also
exist and are called hadrons.
electron, the muon and the tau. The three quark generations consist of the up and down, the charm and strange, and the
top and bottom quark. A full list of particles of the standard model can be found in [@fig:sm]. Furthermore, all
fermions have an associated anti particle with reversed charge. Bound states of multiple quarks also exist and are
called hadrons.
![
Elementary particles of the Standard Model and their mass charge and spin. Taken from [@SM]
Elementary particles of the Standard Model and their mass charge and spin [@SM].
](./figures/sm_wikipedia.pdf){width=50% #fig:sm}
The gauge bosons, namely the photon, $W^\pm$ bosons, $Z^0$ boson, and gluon, are mediators of the different
@ -355,10 +355,9 @@ For that, it has an onion like setup, as can be seen in [@fig:cms_setup]. The pa
through a tracking system. They then pass an electromagnetic as well as a hadronic calorimeter. This part is surrounded
by a superconducting solenoid that generates a magenetic field of 3.8 T. Outside of the solenoid are big muon chambers.
In 2016 the CMS captured data of an integrated luminosity of $\SI{37.80}{\per\femto\barn}$. In 2017 it collected
$\SI{44.98}{\per\femto\barn}$ and in 2018 $\SI{63.67}{\per\femto\barn}$. Because of eventual inconsistencies in the
setup, some data have to be discarded. The amount of usable data is $\SI{34.92}{\per\femto\barn}$,
$\SI{41.53}{\per\femto\barn}$ and $\SI{59.74}{\per\femto\barn}$ for the years 2016, 2017 and 2018, totalling to
$\SI{137.19}{\per\femto\barn}$ of data.
$\SI{44.98}{\per\femto\barn}$ and in 2018 $\SI{63.67}{\per\femto\barn}$ [@CMS_LUMI]. The amount of data usable for
research is $\SI{35.92}{\per\femto\barn}$, $\SI{41.53}{\per\femto\barn}$ and $\SI{59.74}{\per\femto\barn}$ for the years
2016, 2017 and 2018, totalling to $\SI{137.19}{\per\femto\barn}$ of data.
![
The setup of the Compact Muon Solenoid showing its onion like structure, the different detector parts and where
@ -378,7 +377,7 @@ therefore, due to conservation of energy, the sum of all transverse momenta afte
this is not the case for the detected events, it implies particles that weren't detected such as neutrinos.
![Coordinate conventions of the CMS illustrating the use of $\eta$ and
$\phi$. The Z axis is in beam direction. Taken from [@COORD_PLOT]
$\phi$. The Z axis is in beam direction [@COORD_PLOT].
](./figures/cms_coordinates.png){#fig:cmscoords width=60%}
### The tracking system
@ -450,7 +449,7 @@ chosen for this thesis. For this analysis, a radius of 0.8 is used.
![
Comparison of the $k_t$, Cambridge/Aachen, SISCone and anti-$k_t$ algorithms clustering a sample parton-level event
with many random soft "ghosts". Taken from [@ANTIKT]
with many random soft "ghosts" [@ANTIKT].
](./figures/antikt-comparision.png){#fig:antiktcomparison}
Furthermore, to approximate the mass of a heavy particle that caused a jet, the soft-drop mass [@SDM] can be used. In
@ -493,13 +492,13 @@ Before looking at the data collected by the CMS experiment, Monte Carlo simulati
signal are used to understand how the data is expected to look like. To replicate the QCD background processes, the
different particle interactions that take place in a proton - proton collision are simulated using the probabilities
provided by the Standard Model by calculating the cross sections of the different Feynman diagrams. This was done using
MadGraph and Pythia 8. Later on, also detector effects (like its limited resolution) are applied to make sure, they look
like real data coming from the CMS detector.
MadGraph [@MADGRAPH] and Pythia 8 [@PYTHIA8]. Later on, also detector effects (like its limited resolution) are applied
to make sure, they look like real data coming from the CMS detector.
The q\* signal samples are simulated by the probabilities given by the q\* theory [@QSTAR_THEORY] and assuming a cross
section of $\SI{1}{\per\pico\barn}$. The simulation was done using MadGraph for eleven masspoints between 1.6 TeV and 7
TeV. Because of the expected high mass, the signal width will be dominated by the resolution of the detector, not by the
natural resonance width.
section of $\SI{1}{\pico\barn}$. The simulation was done using MadGraph [@MADGRAPH] for eleven masspoints between 1.6
TeV and 7 TeV. Because of the expected high mass, the signal width will be dominated by the resolution of the detector,
not by the natural resonance width.
The dijet invariant mass distribution of the QCD background is expected to smoothly fall with higher masses.
It is therefore fitted using the following smooth falling function with three parameters p0, p1, p2:
@ -519,14 +518,14 @@ The signal is fitted using a double sided crystal ball function. It has six para
A gaussian and a poisson function have also been studied but found to be not able to reproduce the signal shape as they
couldn't model the tails on both sides of the peak.
A linear combination of the signal and background function is then fitted to a toy dataset with gaussian errors and a
simulated signal cross section of $\SI{1}{\per\pico\barn}$. The resulting coefficients of said combination then show the
expected signal rate for the simulated cross section. An example of such a fit can be seen in [@fig:cb_fit]. In this
figure, a binning of 200 GeV is used for presentational purposes. The analysis itself is conducted using a 1 GeV
binning. It can be seen that the fit works very well and therefore confirms the functions chosen to model signal and
background. This is supported by a $\chi^2 /$ ndof of 0.5 and a found mean for the signal at 2999 $\pm$ 23
$\si{\giga\eV}$ which is in very good agreement with the expected 3000 GeV mean. Those numbers clearly show that the
method in use is able to successfully describe the simulated toy data.
A linear combination of the signal and background function is then fitted to a toy dataset with gaussian errors obtained
by adding simulated background and signal. The resulting coefficients of said combination then show the expected signal
rate for the simulated signal cross section of $\SI{1}{\pico\barn}$. An example of such a fit can be seen in
[@fig:cb_fit]. In this figure, a binning of 200 GeV is used for presentational purposes. The analysis itself is
conducted using a 1 GeV binning. It can be seen that the fit works very well and therefore confirms the functions chosen
to model signal and background. This is supported by a $\chi^2 /$ ndof of 0.5 and a found mean for the signal at 2999
$\pm$ 23 $\si{\giga\eV}$ which is in very good agreement with the expected 3000 GeV mean. Those numbers clearly show
that the method in use is able to successfully describe the simulated toy data.
![
Combined fit of signal and background on a toy dataset with gaussian errors and a simulated resonance mass of 3 TeV.
@ -573,6 +572,7 @@ events.
\includegraphics{./figures/2016/v1_Njet_N_jets_stack.eps}
\end{minipage}
\begin{minipage}{\textwidth}
\vspace{0.1cm}
\centering\textbf{Comparison for the combined dataset}
\end{minipage}
\begin{minipage}{0.5\textwidth}
@ -592,8 +592,9 @@ two jets with the highest transverse momentum. The q\* particle is expected to b
mass energy of the collision and will therefore be almost stationary. Its decay products should therefore be close to
back to back, which means the $\Delta\eta$ distribution is expected to peak at zero. At the same time, particles
originating from QCD effects are expected to have a higher $\Delta\eta$. To maintain comparability, the same selection
as in previous research of $\Delta\eta \le 1.3$ is used. The comparison of the $m_{jj}$ distribution seen in [@fig:deta]
before and after the cut clearly shows, that the signal sensitivity was greatly improved by this cut.
as in previous research of $\Delta\eta \le 1.3$ is used. In the top two distributions of [@fig:deta], this cut is marked
by a vertical black line. The difference in the $m_{jj}$ distribution shows the strong reduction of the background by
this cut.
\begin{figure}
\begin{minipage}{\textwidth}
@ -625,7 +626,8 @@ before and after the cut clearly shows, that the signal sensitivity was greatly
\begin{minipage}{0.5\textwidth}
\includegraphics{./figures/combined/v1_Eta_invMass_stack.eps}
\end{minipage}
\caption{Demonstration of the effect of the $\Delta\eta$ cut at $\Delta\eta \le 1.3$. \newline
\caption{Demonstration of the effect of the $\Delta\eta$ cut at $\Delta\eta \le 1.3$ on the $m_{jj}$ distribution.
\newline
Left: Partial dataset of $\SI{35.92}{\per\femto\barn}$ Right: Full dataset of $\SI{137.19}{\per\femto\barn}$.
}
\label{fig:deta}
@ -686,7 +688,7 @@ distributions are in very good agreement.
For analysing the data from the CMS experiment, jet energy corrections have to be applied. Those are to calibrate the
ECAL and HCAL parts of the CMS, so the energy of the detected particles can be measured correctly. The corrections used
were published by the CMS group. [cite todo]
were recommended by the CMS group for internal use [@JEC].
\begin{figure}
\begin{minipage}{0.5\textwidth}
@ -718,7 +720,7 @@ were published by the CMS group. [cite todo]
\end{figure}
### Sideband
### Sideband region
The sideband region is introduced to make sure no bias in the data and Monte Carlo simulation is introduced and also to
verify the agreement of data and simulation. It is a region in which no signal event is expected. Again, data and the
@ -793,7 +795,7 @@ boosted vector boson.
The lower the $\tau_{21}$ is, the more likely a jet is caused by the decay of a vector boson. Therefore a selection will
be introduced, so that $\tau_{21}$ of one candidate jet is smaller then some value that will be determined by the
optimization process described in the next chapter. As candidate jet the one of the two highest $p_t$ jets passing the
optimisation process described in the next chapter. As candidate jet the one of the two highest $p_t$ jets passing the
soft-drop mass window is used. If both of them pass, the one with higher $p_t$ is chosen.
## DeepAK8
@ -803,9 +805,8 @@ reduces the background rate by up to a factor of ~10 with the same signal effici
approaches like the N-Subjettiness method. This is shown by [@fig:ak8_eff], showing a comparison of background and
signal efficiency of the DeepAK8 tagger with, between others, the $\tau_{20}$ tagger that is also used in this analysis.
![Comparison of tagger efficiencies, showing, between others, the DeepAK8-MD (which stands for mass decorrelated and is
the one used for this research) and $\tau_{21}$ tagger used in this analysis.
Taken from [@DEEP_BOOSTED]](./figures/deep_ak8.pdf){#fig:ak8_eff width=60%}
![Comparison of tagger efficiencies, showing, between others, the DeepAK8 and $\tau_{21}$ tagger used in this analysis
[@DEEP_BOOSTED].](./figures/deep_ak8.pdf){#fig:ak8_eff width=60%}
The DNN has two input lists for each jet. The first is a list of up to 100 constituent particles of the jet, sorted by
decreasing $p_t$. A total of 42 properties of the particles such es $p_t$, energy deposit, charge and the
@ -816,32 +817,32 @@ networks (CNN) that each process one of the input lists. The outputs of the two
a fully-connected network to identify the jet. The network was trained with a sample of 40 million jets, another 10
million jets were used for development and validation.
In this thesis, the mass decorrelated version of the DeepAK8 tagger is used. It adds an additional mass predictor layer,
that is trained to quantify how strongly the output of the non-decorrelated tagger is correlated to the mass of a
particle. Its output is fed back to the network as a penalty so it avoids using features of the particles correlated to
their mass. The result is a largely mass decorrelated tagger of heavy resonances, that doesn't introduce a bias in the
jet mass shape. As can be seen in [@fig:ak8_eff], it performs not as good as the non-mass-decorrelated version, but
still better than the other taggers it was compared to.
In this thesis, the mass decorrelated version of the DeepAK8 tagger, called DeepAK8-MD but further referred to as only
DeepAK8, is used. It adds an additional mass predictor layer, that is trained to quantify how strongly the output of the
non-decorrelated tagger is correlated to the mass of a particle. Its output is fed back to the network as a penalty so
it avoids using features of the particles correlated to their mass. The result is a largely mass decorrelated tagger of
heavy resonances, that doesn't introduce a bias in the jet mass shape. As can be seen in [@fig:ak8_eff], it performs not
as good as the non-mass-decorrelated version, but still better than the other taggers it was compared to.
The higher the discriminant value, called WvsQCD resp. ZvsQCD, of the deep boosted tagger, the more likely is the jet to
be caused by the decay of a vector boson. Therefore, using the same way to choose a candidate jet as for the
N-subjettiness tagger, a selection is applied so that this candidate jet has a WvsQCD/ZvsQCD value greater than some
value determined by the optimization presented next.
The higher the discriminant value, called WvsQCD resp. ZvsQCD (further referred to as only VvsQCD), of the DeepAK8
tagger, the more likely is the jet to be caused by the decay of a vector boson. Therefore, using the same way to choose
a candidate jet as for the N-subjettiness tagger, a selection is applied so that this candidate jet has a VvsQCD value
greater than some value determined by the optimisation presented next.
## Optimization {#sec:opt}
## Optimisation {#sec:opt}
To figure out the best value to cut on the discriminants introduced by the two taggers, a value to quantify how good a
cut is has to be introduced. For that, the significance calculated by $\frac{S}{\sqrt{B}}$ will be used. S stands for
the amount of signal events and B for the amount of background events in a given interval. This value assumes a gaussian
error on the background so it will be calculated for the 2 TeV masspoint where enough background events exist to justify
this assumption. It follows from the central limit theorem that states, that for identical distributed random variables,
their sum converges to a gaussian distribution. The significance therefore represents how good the signal can be
distinguished from the background in units of the standard deviation of the background. As interval, a 10 % margin
around the resonance nominal mass is chosen. The significance is then calculated for different selections on the
discriminant of the two taggers and then plotted in dependence on the minimum resp. maximum allowed value of the
discriminant to pass the selection for the deep boosted resp. the N-subjettiness tagger.
error on the background so it will be calculated for the 2 TeV masspoint of the decay to qW where enough background
events exist to justify this assumption, which follows from the central limit theorem [@CLT] that states, that for
identical distributed random variables, their sum converges to a gaussian distribution. The significance represents how
good the signal can be distinguished from the background in units of the standard deviation of the background. As
interval, a 10 % margin around the resonance nominal mass is chosen. The significance is then calculated for different
selections on the discriminant of the two taggers and then plotted in dependence on the minimum resp. maximum allowed
value of the discriminant to pass the selection for the DeepAK8 resp. the N-subjettiness tagger.
The optimization process is done using only the data from year 2018, assuming the taggers have similar performances on
The optimisation process is done using only the data from year 2018, assuming the taggers have similar performances on
the data of the different years.
\begin{figure}
@ -851,28 +852,27 @@ the data of the different years.
\begin{minipage}{0.5\textwidth}
\includegraphics{./figures/sig-tau.pdf}
\end{minipage}
\caption{Significance plots for the deep boosted (left) and N-subjettiness (right) tagger at the 2 TeV masspoint.}
\caption{Significance plots for the DeepAK8 (left) and N-subjettiness (right) tagger at the 2 TeV masspoint.}
\label{fig:sig}
\end{figure}
As a result, the $\tau_{21}$ cut is placed at $\le 0.35$, confirming the value previous research chose and the deep
boosted cut is placed at $\ge 0.95$. For the deep boosted tagger, 0.97 would give a slightly higher significance but as
it is very close to the edge where the significance drops very low and the higher the cut the less background will be
left to calculate the cross section limits, especially at higher resonance masses, the slightly less strict cut is
chosen.
boosted cut is placed at $\ge 0.95$. For the DeepAK8 tagger, 0.97 would give a slightly higher significance but as it is
very close to the edge where the significance drops very low and the higher the cut the less background will be left to
calculate the cross section limits, especially at higher resonance masses, the slightly less strict cut is chosen.
For both taggers also a low purity category is introduced for high TeV regions. Using the cuts optimized for 2 TeV,
there are very few background events left for higher resonance masses, but to reliably calculate cross section limits,
those are needed. Therefore in the final cross section calculation, the two categories are combined to have a high
signal sensitivity for all masspoints between 1.6 TeV and 7 TeV that were simulated. As low purity category for the
N-subjettiness tagger, a cut at $0.35 < \tau_{21} < 0.75$ is used. For the deep boosted tagger the opposite cut from the
high purity category is used: $VvsQCD < 0.95$.
For both taggers also a low purity category is introduced. Using the cuts optimized for 2 TeV, there are very few
background events left for higher resonance masses, but to reliably calculate cross section limits, those are needed.
Therefore in the final cross section calculation, the two categories are combined to have a high signal sensitivity for
all masspoints between 1.6 TeV and 7 TeV that were simulated. As low purity category for the N-subjettiness tagger, a
cut at $0.35 < \tau_{21} < 0.75$ is used. For the DeepAK8 tagger the opposite cut from the high purity category is used:
$VvsQCD < 0.95$.
\newpage
# Signal extraction {#sec:extr}
After the optimization, now the optimal selection for the N-subjettiness as well as the deep boosted tagger is found and
After the optimisation, now the optimal selection for the N-subjettiness as well as the DeepAK8 tagger is found and
applied to the simulated samples as well as the data collected by the CMS experiment. The fit described in [@sec:moa] is
performed for all masspoints of the decay to qW and qZ and for the partial dataset of $\SI{35.92}{\per\femto\barn}$ as
well as the complete dataset of $\SI{137.19}{\per\femto\barn}$ separately.
@ -886,11 +886,11 @@ level of 95 %.
In the absence of the q\* particle in the data, the observed limits lie within the $2\sigma$ environment, meaning a 95 %
confidence level, of the expected limit. This observed limit is plotted together with a theory line, representing the
cross section limits expected, if the q\* predicted by [@QSTAR_THEORY] would exist.
Since no significant deviation from the Standard Model is found while looking for the resonance, the crossing of the
theory line with the observed limit is calculated, to have a limit of mass up to which the existence of the q\* particle
can be excluded. To find the uncertainty of this result, the crossing of the theory line plus, respectively minus, its
uncertainty with the observed limit is also calculated.
cross section limits expected, if the q\* predicted by [@QSTAR_THEORY] would exist. Since no significant deviation from
the Standard Model is found while looking for the resonance, the crossing of the theory line with the observed limit is
calculated, to have a limit of mass up to which the existence of the q\* particle can be excluded. To find the
uncertainty of this result, the crossing of the theory line plus, respectively minus, its uncertainty with the observed
limit is also calculated.
## Systematic Uncertainties
@ -910,7 +910,7 @@ analysis and is therefore also considered as an uncertainty, which is approximat
Third, the uncertainty of the parameters of the background fit is also considered, as it might change the background
shape a little and therefore influence how many signal and background events are reconstructed from the data.
Fourth, the uncertainty on the luminosity influence the normalization of the processes. Its value is 2.5 % [cite todo].
Fourth, the uncertainty on the luminosity influences the normalization of the processes. Its value is 2.5 % [@LUMI_UNC].
\newpage
# Results
@ -927,23 +927,23 @@ seen in [@fig:res2016] were obtained.
As described in [@sec:extr], the calculated cross section limits are used to then calculate a mass limit, meaning the
lowest possible mass of the q\* particle, by finding the crossing of the theory line with the observed cross section
limit. In [@fig:res2016dw,@fig:res2016dz] it can be seen, that the observed limit using the deep boosted tagger in the
region where theory and observed limit cross is very high compared to when using the N-subjettiness tagger. Therefore
the two lines cross at lower resonance masses, which results in lower exclusion limits on the mass of the q\* particle
causing the deep boosted tagger to perform worse than the N-subjettiness tagger in regards of establishing those limits
as can be seen in [@tbl:res2016]. The table also shows the upper and lower limits on the mass found by calculating the
crossing of the theory plus resp. minus its uncertainty. Due to the theory and the observed limits line being slowly
falling in the high TeV region, even a small uncertainty of the theory can cause a high difference of the mass limit.
limit. In [@fig:res2016dw,@fig:res2016dz] it can be seen, that the observed limit using the DeepAK8 tagger in the region
where theory and observed limit cross is very high compared to when using the N-subjettiness tagger. Therefore the two
lines cross at lower resonance masses, which results in lower exclusion limits on the mass of the q\* particle causing
the DeepAK8 tagger to perform worse than the N-subjettiness tagger in regards of establishing those limits as can be
seen in [@tbl:res2016]. The table also shows the upper and lower limits on the mass found by calculating the crossing of
the theory plus resp. minus its uncertainty. Due to the theory and the observed limits line being slowly falling in the
high TeV region, even a small uncertainty of the theory can cause a high difference of the mass limit.
: Mass limits found using the partial dataset of $\SI{35.92}{\per\femto\barn}$ {#tbl:res2016}
| Decay | Tagger | Limit [TeV] | Upper Limit [TeV] | Lower Limit [TeV] |
|-------|--------------|-------------|-------------------|-------------------|
| qW | $\tau_{21}$ | 5.39 | 6.01 | 4.99 |
| qW | deep boosted | 4.96 | 5.19 | 4.84 |
| qZ | $\tau_{21}$ | 4.86 | 4.96 | 4.70 |
| qZ | deep boosted | 4.62 | 4.71 | 4.49 |
| Decay | Tagger | Limit [TeV] | Upper Limit [TeV] | Lower Limit [TeV] |
|-------|-------------|-------------|-------------------|-------------------|
| qW | $\tau_{21}$ | 5.39 | 6.01 | 4.99 |
| qW | DeepAK8 | 4.96 | 5.19 | 4.84 |
| qZ | $\tau_{21}$ | 4.86 | 4.96 | 4.70 |
| qZ | DeepAK8 | 4.62 | 4.71 | 4.49 |
\begin{figure}%
@ -951,13 +951,13 @@ falling in the high TeV region, even a small uncertainty of the theory can cause
\subfloat[Decay to qW, using N-subjettiness tagger]{%
\label{fig:res2016tw}%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqW_2016tau_13TeV.pdf}}
\subfloat[Decay to qW, using deep boosted tagger]{%
\subfloat[Decay to qW, using DeepAK8 tagger]{%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqW_2016db_13TeV.pdf}%
\label{fig:res2016dw}}\\
\subfloat[Decay to qZ, using N-subjettiness tagger]{%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqZ_2016tau_13TeV.pdf}%
\label{fig:res2016tz}}%
\subfloat[Decay to qZ, using deep boosted tagger]{%
\subfloat[Decay to qZ, using DeepAK8 tagger]{%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqZ_2016db_13TeV.pdf}%
\label{fig:res2016dz}}%
\caption{Results of the cross section limits for the partial dataset of 2016 using the $\tau_{21}$ tagger and the deep
@ -987,8 +987,8 @@ results are in good agreement. The cross section limits of the previous research
\begin{minipage}{0.5\textwidth}
\includegraphics{./figures/results/prev_qZ.png}
\end{minipage}
\caption{Previous results of the cross section limits for q\* decaying to qW (left) and q\* decaying to qZ (right).
Taken from \cite{PREV_RESEARCH}.}
\caption{Previous results of the cross section limits for q\* decaying to qW (left) and q\* decaying to qZ (right)
\cite{PREV_RESEARCH}.}
\label{fig:prev}
\end{figure}
@ -1003,12 +1003,12 @@ The results for the mass limits of the combined years are presented in the follo
: Mass limits found using $\SI{137.19}{\per\femto\barn}$ of data {#tbl:resCombined}
| Decay | Tagger | Limit [TeV] | Upper Limit [TeV] | Lower Limit [TeV] |
|-------|--------------|-------------|-------------------|-------------------|
| qW | $\tau_{21}$ | 6.00 | 6.26 | 5.74 |
| qW | deep boosted | 6.11 | 6.31 | 5.39 |
| qZ | $\tau_{21}$ | 5.49 | 5.76 | 5.29 |
| qZ | deep boosted | 4.95 | 5.13 | 4.85 |
| Decay | Tagger | Limit [TeV] | Upper Limit [TeV] | Lower Limit [TeV] |
|-------|-------------|-------------|-------------------|-------------------|
| qW | $\tau_{21}$ | 6.00 | 6.26 | 5.74 |
| qW | DeepAK8 | 6.11 | 6.31 | 5.39 |
| qZ | $\tau_{21}$ | 5.49 | 5.76 | 5.29 |
| qZ | DeepAK8 | 4.95 | 5.13 | 4.85 |
The combination of the three years not just improved the cross section limits, but also the limit for the mass of the
@ -1021,16 +1021,16 @@ what was concluded by the previous research [@PREV_RESEARCH].
\subfloat[Decay to qW, using N-subjettiness tagger]{%
\label{fig:resCombinedtw}%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqW_Combinedtau_13TeV.pdf}}
\subfloat[Decay to qW, using deep boosted tagger]{%
\subfloat[Decay to qW, using DeepAK8 tagger]{%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqW_Combineddb_13TeV.pdf}%
\label{fig:resCombineddw}}\\
\subfloat[Decay to qZ, using N-subjettiness tagger]{%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqZ_Combinedtau_13TeV.pdf}%
\label{fig:resCombinedtz}}%
\subfloat[Decay to qZ, using deep boosted tagger]{%
\subfloat[Decay to qZ, using DeepAK8 tagger]{%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqZ_Combineddb_13TeV.pdf}%
\label{fig:resCombineddz}}%
\caption{Results of the cross section limits for the combined dataset using the $\tau_{21}$ tagger and the deep boosted
\caption{Results of the cross section limits for the combined dataset using the $\tau_{21}$ tagger and the DeepAK8
tagger.}
\label{fig:resCombined}
\end{figure}
@ -1038,25 +1038,26 @@ tagger.}
## Comparison of taggers
The results presented in [@tbl:res2016, @tbl:resCombined] show, that the deep boosted tagger was not able to
The results presented in [@tbl:res2016, @tbl:resCombined] show, that the DeepAK8 tagger was not able to
significantly improve the results compared to the N-subjettiness tagger.
For further comparison, in [@fig:limit_comp] the expected limits of the different taggers for the q\* $\rightarrow$ qW
and the q\* $\rightarrow$ qZ decay are shown. It can be seen, that the deep boosted is at best as good as the
and the q\* $\rightarrow$ qZ decay are shown. It can be seen, that the DeepAK8 is at best as good as the
N-subjettiness tagger. This was not the expected result, as the deep neural network was already found to provide a
higher significance in the optimisation done in [@sec:opt]. The higher significance should also result in lower cross
section limits. To make sure, there is no mistake in the setup, also the expected cross section limits using only the
high purity category of the two taggers with 2018 data are compared in [@fig:comp_2018]. There, the cross section limits
calculated using the deep boosted tagger are a bit lower than with the N-subjettiness tagger, showing, that the method
calculated using the DeepAK8 tagger are a bit lower than with the N-subjettiness tagger, showing, that the method
used for optimisation is working but the assumption of it also applying to the combined dataset did not hold.
This can be explained by some training issues identified lately.
The training of the DeepAK8 tagger was done for the data of year 2016. It therefore performs differently for the data of
the other years. This caused the DeepAK8 tagger to perform significantly worse than it could have for several reasons.
First, the optimization done for the data of year 2018 could therefore not be applied to the other datasets. Second,
First, the optimisation done for the data of year 2018 could therefore not be applied to the other datasets. Second,
even for the data of 2016, a newer version of the background simulation was used, that, in combination with the samples
used for the signal, turned out to be the worst case scenario for the used training.
Recently, the training was improved to better perform across all datasets, but those changes could not be incorporated
into this thesis due to it not being possible to do this in a reasonable timeframe.
\newpage
@ -1073,8 +1074,8 @@ decay to qZ}
\end{figure}
![Comparision of deep boosted and N-subjettiness tagger in the high purity category using the data from year 2018.
](./figures/limit_comp_2018.pdf){#fig:comp_2018 width=70%}
![Comparison of DeepAK8 and N-subjettiness tagger in the high purity category using the data from year 2018.
](./figures/limit_comp_2018.pdf){#fig:comp_2018 width=55%}
\clearpage
\newpage
@ -1085,7 +1086,7 @@ In this thesis, a search for the q\* particle decaying to q + W and q + Z was pr
collisions at the LHC of an integrated luminosity of $\SI{137.19}{\per\femto\barn}$ collected by the CMS experiment at a
centre-of-mass energy of $\sqrt{s} = \SI{13}{\tera\eV}$ has been searched. Also a partial dataset of
$\SI{35.92}{\per\femto\barn}$ was analysed, to be able to compare the results to previous research. Monte Carlo
simulations were used to estimate the QCD background and signal.
simulations were used to model the QCD multijet background and signal shapes.
A selection was introduced to reduce background events and enhance signal sensitivity. This selection required at least
two jets, a $\Delta\eta \ge 1.3$ between the two highest $p_t$ jets, an invariant mass of the two highest $p_t$ jets
@ -1097,7 +1098,7 @@ vector boson. For both of them, two categories were introduced. A high purity ca
sensitivity in the low TeV region of the invariant mass spectrum and a low purity category, aiming for better statistics
in the high TeV region. For the DeepAK8 tagger, a high purity category of $VvsQCD > 0.95$ and a low purity category of
$VvsQCD \le 0.95$ was used. For the N-subjettiness tagger the high purity category was $\tau_{21} < 0.35$ and the low
purity category $0.35 < \tau_{21} < 0.75$. These values were obtained by optimizing for the highest possible
purity category $0.35 < \tau_{21} < 0.75$. These values were obtained by optimising for the highest possible
significance of the signal.
A combined fit to the dijet invariant mass distribution of background plus signal has been used to determine their shape
@ -1106,8 +1107,12 @@ Because no significant deviation from the Standard Model was observed, new exclu
particle were set. These are 6.1 TeV by analyzing the decay to qW, respectively 5.5 TeV for the decay to qZ. Those
limits are about 1 TeV higher than the ones found in previous research, that found them to be 5 TeV resp. 4.7 TeV.
The DeepAK8 tagger performed worse than was expected. This can be explained with some training issues identified lately.
Therefore, with an updated training, it is expected that the presented results can be further improved.
The performance of the two taggers used have been compared and found to produce similar results. This was unexpected, as
the DeepAK8 tagger was supposed to perform better than the N-subjettiness tagger. The result analysing the decay to qW
was $\SI{0.1}{\tera\eV}$ better using the DeepAK8 than with the N-subjettiness tagger, but analysing the decay to qZ it
was $\SI{0.5}{\tera\eV}$ worse. The performance of the DeepAK8 tagger is likely to significantly improve with an updated
training that was not yet available in the framework used by this thesis.
\newpage

Binary file not shown.

View File

@ -41,7 +41,7 @@
>
]>
<requests version="1.0">
<internal package="biblatex" priority="9" active="0">
<internal package="biblatex" priority="9" active="1">
<generic>latex</generic>
<provides type="dynamic">
<file>thesis.bcf</file>

View File

@ -78,7 +78,7 @@
\usepackage{csquotes}
\usepackage{abstract}
\pagenumbering{gobble}
\setlength{\parskip}{0.5em}
\setlength{\parskip}{0.4em}
\bibliographystyle{lucas_unsrt}
\makeatletter
\@ifpackageloaded{subfig}{}{\usepackage{subfig}}
@ -168,7 +168,7 @@ to a mass of 6.1\ TeV (qW) resp. 5.5\ TeV (qZ) with a confidence level of 95 \%.
the limits found by a previous research of data with an integrated luminosity of $\SI{35.92}{\per\femto\barn}$ collected
by the CMS experiment in 2016, excluding the q* particle up to a mass of 5.0\ TeV resp. 4.7\ TeV. The DeepAK8 tagger is
found to currently be at the same level as the N-subjettiness tagger, giving a $\SI{0.1}{\tera\eV}$ better result for
the decay to qW but a by $\SI{0.6}{\tera\eV}$ worse one for the decay to qZ. By optimizing the neural network's training
the decay to qW but a by $\SI{0.5}{\tera\eV}$ worse one for the decay to qZ. By optimising the neural network's training
for the datasets of 2016, 2017 and 2018, the sensitivity can likely be improved.
\end{abstract}
@ -188,7 +188,7 @@ Tagger verglichen. Im Ergebnis kann keine signifikante Abweichung vom Standardmo
wird mit einem Konfidenzniveau von 95 \% bis zu einer Masse von 6.1\ TeV (qW) bzw. 5.5\ TeV (qZ) ausgeschlossen. Das Limit
liegt etwa 1\ TeV höher, als das anhand des $\SI{35.92}{\per\femto\barn}$ großen Datensatzes von 2016 gefundene von 5.0
TeV bzw. 4.7\ TeV. Beim Zerfall zu qW erzielt der DeepAK8 Tagger ein um $\SI{0.1}{\tera\eV}$ besseres Ergebnis, als der
N-Subjettiness Tagger, beim Zerfall zu qZ jedoch ein um $\SI{0.6}{\tera\eV}$ schlechteres. Durch Verbesserung des
N-Subjettiness Tagger, beim Zerfall zu qZ jedoch ein um $\SI{0.5}{\tera\eV}$ schlechteres. Durch Verbesserung des
Trainings des neuronalen Netzwerkes für die drei Datensätze von 2016, 2017 und 2018, gibt es aber noch Potential die
Sensitivität zu verbessern.
@ -278,19 +278,18 @@ and leptons. Quarks and leptons can also be categorized into three
generations, each of which contains two particles, also called flavours.
For leptons, the three generations each consist of a charged lepton and
its corresponding neutrino, namely the electron, the muon and the tau.
The three quark generations consist of first, the up and down, second,
the charm and strange, and third, the top and bottom quark. A full list
of particles of the standard model can be found in Fig.~\ref{fig:sm}.
Furthermore, all fermions have an associated anti particle with reversed
charge. Bound states of multiple quarks also exist and are called
hadrons.
The three quark generations consist of the up and down, the charm and
strange, and the top and bottom quark. A full list of particles of the
standard model can be found in Fig.~\ref{fig:sm}. Furthermore, all
fermions have an associated anti particle with reversed charge. Bound
states of multiple quarks also exist and are called hadrons.
\begin{figure}
\hypertarget{fig:sm}{%
\centering
\includegraphics[width=0.5\textwidth,height=\textheight]{./figures/sm_wikipedia.pdf}
\caption{Elementary particles of the Standard Model and their mass
charge and spin. Taken from \autocite{SM}}\label{fig:sm}
charge and spin \autocite{SM}.}\label{fig:sm}
}
\end{figure}
@ -563,11 +562,11 @@ field of 3.8 T. Outside of the solenoid are big muon chambers. In 2016
the CMS captured data of an integrated luminosity of
\(\SI{37.80}{\per\femto\barn}\). In 2017 it collected
\(\SI{44.98}{\per\femto\barn}\) and in 2018
\(\SI{63.67}{\per\femto\barn}\). Because of eventual inconsistencies in
the setup, some data have to be discarded. The amount of usable data is
\(\SI{34.92}{\per\femto\barn}\), \(\SI{41.53}{\per\femto\barn}\) and
\(\SI{59.74}{\per\femto\barn}\) for the years 2016, 2017 and 2018,
totalling to \(\SI{137.19}{\per\femto\barn}\) of data.
\(\SI{63.67}{\per\femto\barn}\) \autocite{CMS_LUMI}. The amount of data
usable for research is \(\SI{35.92}{\per\femto\barn}\),
\(\SI{41.53}{\per\femto\barn}\) and \(\SI{59.74}{\per\femto\barn}\) for
the years 2016, 2017 and 2018, totalling to
\(\SI{137.19}{\per\femto\barn}\) of data.
\begin{figure}
\hypertarget{fig:cms_setup}{%
@ -603,8 +602,8 @@ neutrinos.
\centering
\includegraphics[width=0.6\textwidth,height=\textheight]{./figures/cms_coordinates.png}
\caption{Coordinate conventions of the CMS illustrating the use of
\(\eta\) and \(\phi\). The Z axis is in beam direction. Taken from
\autocite{COORD_PLOT}}\label{fig:cmscoords}
\(\eta\) and \(\phi\). The Z axis is in beam direction
\autocite{COORD_PLOT}.}\label{fig:cmscoords}
}
\end{figure}
@ -721,8 +720,8 @@ For this analysis, a radius of 0.8 is used.
\includegraphics{./figures/antikt-comparision.png}
\caption{Comparison of the \(k_t\), Cambridge/Aachen, SISCone and
anti-\(k_t\) algorithms clustering a sample parton-level event with many
random soft \enquote{ghosts}. Taken from
\autocite{ANTIKT}}\label{fig:antiktcomparison}
random soft \enquote{ghosts}
\autocite{ANTIKT}.}\label{fig:antiktcomparison}
}
\end{figure}
@ -789,16 +788,16 @@ background processes, the different particle interactions that take
place in a proton - proton collision are simulated using the
probabilities provided by the Standard Model by calculating the cross
sections of the different Feynman diagrams. This was done using MadGraph
and Pythia 8. Later on, also detector effects (like its limited
resolution) are applied to make sure, they look like real data coming
from the CMS detector.
\autocite{MADGRAPH} and Pythia 8 \autocite{PYTHIA8}. Later on, also
detector effects (like its limited resolution) are applied to make sure,
they look like real data coming from the CMS detector.
The q* signal samples are simulated by the probabilities given by the q*
theory \autocite{QSTAR_THEORY} and assuming a cross section of
\(\SI{1}{\per\pico\barn}\). The simulation was done using MadGraph for
eleven masspoints between 1.6 TeV and 7 TeV. Because of the expected
high mass, the signal width will be dominated by the resolution of the
detector, not by the natural resonance width.
\(\SI{1}{\pico\barn}\). The simulation was done using MadGraph
\autocite{MADGRAPH} for eleven masspoints between 1.6 TeV and 7 TeV.
Because of the expected high mass, the signal width will be dominated by
the resolution of the detector, not by the natural resonance width.
The dijet invariant mass distribution of the QCD background is expected
to smoothly fall with higher masses. It is therefore fitted using the
@ -830,18 +829,19 @@ not able to reproduce the signal shape as they couldn't model the tails
on both sides of the peak.
A linear combination of the signal and background function is then
fitted to a toy dataset with gaussian errors and a simulated signal
cross section of \(\SI{1}{\per\pico\barn}\). The resulting coefficients
of said combination then show the expected signal rate for the simulated
cross section. An example of such a fit can be seen in
Fig.~\ref{fig:cb_fit}. In this figure, a binning of 200 GeV is used for
presentational purposes. The analysis itself is conducted using a 1 GeV
binning. It can be seen that the fit works very well and therefore
confirms the functions chosen to model signal and background. This is
supported by a \(\chi^2 /\) ndof of 0.5 and a found mean for the signal
at 2999 \(\pm\) 23 \(\si{\giga\eV}\) which is in very good agreement
with the expected 3000 GeV mean. Those numbers clearly show that the
method in use is able to successfully describe the simulated toy data.
fitted to a toy dataset with gaussian errors obtained by adding
simulated background and signal. The resulting coefficients of said
combination then show the expected signal rate for the simulated signal
cross section of \(\SI{1}{\pico\barn}\). An example of such a fit can be
seen in Fig.~\ref{fig:cb_fit}. In this figure, a binning of 200 GeV is
used for presentational purposes. The analysis itself is conducted using
a 1 GeV binning. It can be seen that the fit works very well and
therefore confirms the functions chosen to model signal and background.
This is supported by a \(\chi^2 /\) ndof of 0.5 and a found mean for the
signal at 2999 \(\pm\) 23 \(\si{\giga\eV}\) which is in very good
agreement with the expected 3000 GeV mean. Those numbers clearly show
that the method in use is able to successfully describe the simulated
toy data.
\begin{figure}
\hypertarget{fig:cb_fit}{%
@ -909,6 +909,7 @@ events.
\includegraphics{./figures/2016/v1_Njet_N_jets_stack.eps}
\end{minipage}
\begin{minipage}{\textwidth}
\vspace{0.1cm}
\centering\textbf{Comparison for the combined dataset}
\end{minipage}
\begin{minipage}{0.5\textwidth}
@ -932,10 +933,10 @@ close to back to back, which means the \(\Delta\eta\) distribution is
expected to peak at zero. At the same time, particles originating from
QCD effects are expected to have a higher \(\Delta\eta\). To maintain
comparability, the same selection as in previous research of
\(\Delta\eta \le 1.3\) is used. The comparison of the \(m_{jj}\)
distribution seen in Fig.~\ref{fig:deta} before and after the cut
clearly shows, that the signal sensitivity was greatly improved by this
cut.
\(\Delta\eta \le 1.3\) is used. In the top two distributions of
Fig.~\ref{fig:deta}, this cut is marked by a vertical black line. The
difference in the \(m_{jj}\) distribution shows the strong reduction of
the background by this cut.
\begin{figure}
\begin{minipage}{\textwidth}
@ -967,7 +968,8 @@ cut.
\begin{minipage}{0.5\textwidth}
\includegraphics{./figures/combined/v1_Eta_invMass_stack.eps}
\end{minipage}
\caption{Demonstration of the effect of the $\Delta\eta$ cut at $\Delta\eta \le 1.3$. \newline
\caption{Demonstration of the effect of the $\Delta\eta$ cut at $\Delta\eta \le 1.3$ on the $m_{jj}$ distribution.
\newline
Left: Partial dataset of $\SI{35.92}{\per\femto\barn}$ Right: Full dataset of $\SI{137.19}{\per\femto\barn}$.
}
\label{fig:deta}
@ -1043,8 +1045,8 @@ good agreement.
For analysing the data from the CMS experiment, jet energy corrections
have to be applied. Those are to calibrate the ECAL and HCAL parts of
the CMS, so the energy of the detected particles can be measured
correctly. The corrections used were published by the CMS group. {[}cite
todo{]}
correctly. The corrections used were recommended by the CMS group for
internal use \autocite{JEC}.
\begin{figure}
\begin{minipage}{0.5\textwidth}
@ -1075,8 +1077,8 @@ todo{]}
\label{fig:data-mc}
\end{figure}
\hypertarget{sideband}{%
\subsubsection{Sideband}\label{sideband}}
\hypertarget{sideband-region}{%
\subsubsection{Sideband region}\label{sideband-region}}
The sideband region is introduced to make sure no bias in the data and
Monte Carlo simulation is introduced and also to verify the agreement of
@ -1174,7 +1176,7 @@ boson.
The lower the \(\tau_{21}\) is, the more likely a jet is caused by the
decay of a vector boson. Therefore a selection will be introduced, so
that \(\tau_{21}\) of one candidate jet is smaller then some value that
will be determined by the optimization process described in the next
will be determined by the optimisation process described in the next
chapter. As candidate jet the one of the two highest \(p_t\) jets
passing the soft-drop mass window is used. If both of them pass, the one
with higher \(p_t\) is chosen.
@ -1196,9 +1198,8 @@ analysis.
\centering
\includegraphics[width=0.6\textwidth,height=\textheight]{./figures/deep_ak8.pdf}
\caption{Comparison of tagger efficiencies, showing, between others, the
DeepAK8-MD (which stands for mass decorrelated and is the one used for
this research) and \(\tau_{21}\) tagger used in this analysis. Taken
from \autocite{DEEP_BOOSTED}}\label{fig:ak8_eff}
DeepAK8 and \(\tau_{21}\) tagger used in this analysis
\autocite{DEEP_BOOSTED}.}\label{fig:ak8_eff}
}
\end{figure}
@ -1216,26 +1217,27 @@ fully-connected network to identify the jet. The network was trained
with a sample of 40 million jets, another 10 million jets were used for
development and validation.
In this thesis, the mass decorrelated version of the DeepAK8 tagger is
used. It adds an additional mass predictor layer, that is trained to
quantify how strongly the output of the non-decorrelated tagger is
correlated to the mass of a particle. Its output is fed back to the
network as a penalty so it avoids using features of the particles
correlated to their mass. The result is a largely mass decorrelated
tagger of heavy resonances, that doesn't introduce a bias in the jet
mass shape. As can be seen in Fig.~\ref{fig:ak8_eff}, it performs not as
good as the non-mass-decorrelated version, but still better than the
other taggers it was compared to.
In this thesis, the mass decorrelated version of the DeepAK8 tagger,
called DeepAK8-MD but further referred to as only DeepAK8, is used. It
adds an additional mass predictor layer, that is trained to quantify how
strongly the output of the non-decorrelated tagger is correlated to the
mass of a particle. Its output is fed back to the network as a penalty
so it avoids using features of the particles correlated to their mass.
The result is a largely mass decorrelated tagger of heavy resonances,
that doesn't introduce a bias in the jet mass shape. As can be seen in
Fig.~\ref{fig:ak8_eff}, it performs not as good as the
non-mass-decorrelated version, but still better than the other taggers
it was compared to.
The higher the discriminant value, called WvsQCD resp. ZvsQCD, of the
deep boosted tagger, the more likely is the jet to be caused by the
decay of a vector boson. Therefore, using the same way to choose a
candidate jet as for the N-subjettiness tagger, a selection is applied
so that this candidate jet has a WvsQCD/ZvsQCD value greater than some
value determined by the optimization presented next.
The higher the discriminant value, called WvsQCD resp. ZvsQCD (further
referred to as only VvsQCD), of the DeepAK8 tagger, the more likely is
the jet to be caused by the decay of a vector boson. Therefore, using
the same way to choose a candidate jet as for the N-subjettiness tagger,
a selection is applied so that this candidate jet has a VvsQCD value
greater than some value determined by the optimisation presented next.
\hypertarget{sec:opt}{%
\subsection{Optimization}\label{sec:opt}}
\subsection{Optimisation}\label{sec:opt}}
To figure out the best value to cut on the discriminants introduced by
the two taggers, a value to quantify how good a cut is has to be
@ -1243,19 +1245,20 @@ introduced. For that, the significance calculated by
\(\frac{S}{\sqrt{B}}\) will be used. S stands for the amount of signal
events and B for the amount of background events in a given interval.
This value assumes a gaussian error on the background so it will be
calculated for the 2 TeV masspoint where enough background events exist
to justify this assumption. It follows from the central limit theorem
that states, that for identical distributed random variables, their sum
converges to a gaussian distribution. The significance therefore
represents how good the signal can be distinguished from the background
in units of the standard deviation of the background. As interval, a 10
\% margin around the resonance nominal mass is chosen. The significance
is then calculated for different selections on the discriminant of the
two taggers and then plotted in dependence on the minimum resp. maximum
allowed value of the discriminant to pass the selection for the deep
boosted resp. the N-subjettiness tagger.
calculated for the 2 TeV masspoint of the decay to qW where enough
background events exist to justify this assumption, which follows from
the central limit theorem \autocite{CLT} that states, that for identical
distributed random variables, their sum converges to a gaussian
distribution. The significance represents how good the signal can be
distinguished from the background in units of the standard deviation of
the background. As interval, a 10 \% margin around the resonance nominal
mass is chosen. The significance is then calculated for different
selections on the discriminant of the two taggers and then plotted in
dependence on the minimum resp. maximum allowed value of the
discriminant to pass the selection for the DeepAK8 resp. the
N-subjettiness tagger.
The optimization process is done using only the data from year 2018,
The optimisation process is done using only the data from year 2018,
assuming the taggers have similar performances on the data of the
different years.
@ -1266,36 +1269,35 @@ different years.
\begin{minipage}{0.5\textwidth}
\includegraphics{./figures/sig-tau.pdf}
\end{minipage}
\caption{Significance plots for the deep boosted (left) and N-subjettiness (right) tagger at the 2 TeV masspoint.}
\caption{Significance plots for the DeepAK8 (left) and N-subjettiness (right) tagger at the 2 TeV masspoint.}
\label{fig:sig}
\end{figure}
As a result, the \(\tau_{21}\) cut is placed at \(\le 0.35\), confirming
the value previous research chose and the deep boosted cut is placed at
\(\ge 0.95\). For the deep boosted tagger, 0.97 would give a slightly
higher significance but as it is very close to the edge where the
significance drops very low and the higher the cut the less background
will be left to calculate the cross section limits, especially at higher
resonance masses, the slightly less strict cut is chosen.
\(\ge 0.95\). For the DeepAK8 tagger, 0.97 would give a slightly higher
significance but as it is very close to the edge where the significance
drops very low and the higher the cut the less background will be left
to calculate the cross section limits, especially at higher resonance
masses, the slightly less strict cut is chosen.
For both taggers also a low purity category is introduced for high TeV
regions. Using the cuts optimized for 2 TeV, there are very few
background events left for higher resonance masses, but to reliably
calculate cross section limits, those are needed. Therefore in the final
cross section calculation, the two categories are combined to have a
high signal sensitivity for all masspoints between 1.6 TeV and 7 TeV
that were simulated. As low purity category for the N-subjettiness
tagger, a cut at \(0.35 < \tau_{21} < 0.75\) is used. For the deep
boosted tagger the opposite cut from the high purity category is used:
\(VvsQCD < 0.95\).
For both taggers also a low purity category is introduced. Using the
cuts optimized for 2 TeV, there are very few background events left for
higher resonance masses, but to reliably calculate cross section limits,
those are needed. Therefore in the final cross section calculation, the
two categories are combined to have a high signal sensitivity for all
masspoints between 1.6 TeV and 7 TeV that were simulated. As low purity
category for the N-subjettiness tagger, a cut at
\(0.35 < \tau_{21} < 0.75\) is used. For the DeepAK8 tagger the opposite
cut from the high purity category is used: \(VvsQCD < 0.95\).
\newpage
\hypertarget{sec:extr}{%
\section{Signal extraction}\label{sec:extr}}
After the optimization, now the optimal selection for the N-subjettiness
as well as the deep boosted tagger is found and applied to the simulated
After the optimisation, now the optimal selection for the N-subjettiness
as well as the DeepAK8 tagger is found and applied to the simulated
samples as well as the data collected by the CMS experiment. The fit
described in Sec.~\ref{sec:moa} is performed for all masspoints of the
decay to qW and qZ and for the partial dataset of
@ -1350,8 +1352,8 @@ considered, as it might change the background shape a little and
therefore influence how many signal and background events are
reconstructed from the data.
Fourth, the uncertainty on the luminosity influence the normalization of
the processes. Its value is 2.5 \% {[}cite todo{]}. \newpage
Fourth, the uncertainty on the luminosity influences the normalization
of the processes. Its value is 2.5 \% \autocite{LUMI_UNC}. \newpage
\hypertarget{results}{%
\section{Results}\label{results}}
@ -1375,18 +1377,17 @@ As described in Sec.~\ref{sec:extr}, the calculated cross section limits
are used to then calculate a mass limit, meaning the lowest possible
mass of the q* particle, by finding the crossing of the theory line with
the observed cross section limit. In Fig.~\ref{fig:res2016dw} it can be
seen, that the observed limit using the deep boosted tagger in the
region where theory and observed limit cross is very high compared to
when using the N-subjettiness tagger. Therefore the two lines cross at
lower resonance masses, which results in lower exclusion limits on the
mass of the q* particle causing the deep boosted tagger to perform worse
than the N-subjettiness tagger in regards of establishing those limits
as can be seen in Table~\ref{tbl:res2016}. The table also shows the
upper and lower limits on the mass found by calculating the crossing of
the theory plus resp. minus its uncertainty. Due to the theory and the
observed limits line being slowly falling in the high TeV region, even a
small uncertainty of the theory can cause a high difference of the mass
limit.
seen, that the observed limit using the DeepAK8 tagger in the region
where theory and observed limit cross is very high compared to when
using the N-subjettiness tagger. Therefore the two lines cross at lower
resonance masses, which results in lower exclusion limits on the mass of
the q* particle causing the DeepAK8 tagger to perform worse than the
N-subjettiness tagger in regards of establishing those limits as can be
seen in Table~\ref{tbl:res2016}. The table also shows the upper and
lower limits on the mass found by calculating the crossing of the theory
plus resp. minus its uncertainty. Due to the theory and the observed
limits line being slowly falling in the high TeV region, even a small
uncertainty of the theory can cause a high difference of the mass limit.
\hypertarget{tbl:res2016}{}
\begin{longtable}[]{@{}lllll@{}}
@ -1403,9 +1404,9 @@ Decay & Tagger & Limit {[}TeV{]} & Upper Limit {[}TeV{]} & Lower Limit
\midrule
\endhead
qW & \(\tau_{21}\) & 5.39 & 6.01 & 4.99\tabularnewline
qW & deep boosted & 4.96 & 5.19 & 4.84\tabularnewline
qW & DeepAK8 & 4.96 & 5.19 & 4.84\tabularnewline
qZ & \(\tau_{21}\) & 4.86 & 4.96 & 4.70\tabularnewline
qZ & deep boosted & 4.62 & 4.71 & 4.49\tabularnewline
qZ & DeepAK8 & 4.62 & 4.71 & 4.49\tabularnewline
\bottomrule
\end{longtable}
@ -1414,13 +1415,13 @@ qZ & deep boosted & 4.62 & 4.71 & 4.49\tabularnewline
\subfloat[Decay to qW, using N-subjettiness tagger]{%
\label{fig:res2016tw}%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqW_2016tau_13TeV.pdf}}
\subfloat[Decay to qW, using deep boosted tagger]{%
\subfloat[Decay to qW, using DeepAK8 tagger]{%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqW_2016db_13TeV.pdf}%
\label{fig:res2016dw}}\\
\subfloat[Decay to qZ, using N-subjettiness tagger]{%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqZ_2016tau_13TeV.pdf}%
\label{fig:res2016tz}}%
\subfloat[Decay to qZ, using deep boosted tagger]{%
\subfloat[Decay to qZ, using DeepAK8 tagger]{%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqZ_2016db_13TeV.pdf}%
\label{fig:res2016dz}}%
\caption{Results of the cross section limits for the partial dataset of 2016 using the $\tau_{21}$ tagger and the deep
@ -1461,8 +1462,8 @@ in Fig.~\ref{fig:prev}.
\begin{minipage}{0.5\textwidth}
\includegraphics{./figures/results/prev_qZ.png}
\end{minipage}
\caption{Previous results of the cross section limits for q\* decaying to qW (left) and q\* decaying to qZ (right).
Taken from \cite{PREV_RESEARCH}.}
\caption{Previous results of the cross section limits for q\* decaying to qW (left) and q\* decaying to qZ (right)
\cite{PREV_RESEARCH}.}
\label{fig:prev}
\end{figure}
@ -1493,9 +1494,9 @@ Decay & Tagger & Limit {[}TeV{]} & Upper Limit {[}TeV{]} & Lower Limit
\midrule
\endhead
qW & \(\tau_{21}\) & 6.00 & 6.26 & 5.74\tabularnewline
qW & deep boosted & 6.11 & 6.31 & 5.39\tabularnewline
qW & DeepAK8 & 6.11 & 6.31 & 5.39\tabularnewline
qZ & \(\tau_{21}\) & 5.49 & 5.76 & 5.29\tabularnewline
qZ & deep boosted & 4.95 & 5.13 & 4.85\tabularnewline
qZ & DeepAK8 & 4.95 & 5.13 & 4.85\tabularnewline
\bottomrule
\end{longtable}
@ -1510,16 +1511,16 @@ the decay to qZ than what was concluded by the previous research
\subfloat[Decay to qW, using N-subjettiness tagger]{%
\label{fig:resCombinedtw}%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqW_Combinedtau_13TeV.pdf}}
\subfloat[Decay to qW, using deep boosted tagger]{%
\subfloat[Decay to qW, using DeepAK8 tagger]{%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqW_Combineddb_13TeV.pdf}%
\label{fig:resCombineddw}}\\
\subfloat[Decay to qZ, using N-subjettiness tagger]{%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqZ_Combinedtau_13TeV.pdf}%
\label{fig:resCombinedtz}}%
\subfloat[Decay to qZ, using deep boosted tagger]{%
\subfloat[Decay to qZ, using DeepAK8 tagger]{%
\includegraphics[width=0.5\textwidth]{./figures/results/brazilianFlag_QtoqZ_Combineddb_13TeV.pdf}%
\label{fig:resCombineddz}}%
\caption{Results of the cross section limits for the combined dataset using the $\tau_{21}$ tagger and the deep boosted
\caption{Results of the cross section limits for the combined dataset using the $\tau_{21}$ tagger and the DeepAK8
tagger.}
\label{fig:resCombined}
\end{figure}
@ -1527,12 +1528,12 @@ tagger.}
\hypertarget{comparison-of-taggers}{%
\subsection{Comparison of taggers}\label{comparison-of-taggers}}
The results presented in Table~\ref{tbl:res2016} show, that the deep
boosted tagger was not able to significantly improve the results
compared to the N-subjettiness tagger. For further comparison, in
The results presented in Table~\ref{tbl:res2016} show, that the DeepAK8
tagger was not able to significantly improve the results compared to the
N-subjettiness tagger. For further comparison, in
Fig.~\ref{fig:limit_comp} the expected limits of the different taggers
for the q* \(\rightarrow\) qW and the q* \(\rightarrow\) qZ decay are
shown. It can be seen, that the deep boosted is at best as good as the
shown. It can be seen, that the DeepAK8 is at best as good as the
N-subjettiness tagger. This was not the expected result, as the deep
neural network was already found to provide a higher significance in the
optimisation done in Sec.~\ref{sec:opt}. The higher significance should
@ -1540,16 +1541,15 @@ also result in lower cross section limits. To make sure, there is no
mistake in the setup, also the expected cross section limits using only
the high purity category of the two taggers with 2018 data are compared
in Fig.~\ref{fig:comp_2018}. There, the cross section limits calculated
using the deep boosted tagger are a bit lower than with the
N-subjettiness tagger, showing, that the method used for optimisation is
working but the assumption of it also applying to the combined dataset
did not hold.
using the DeepAK8 tagger are a bit lower than with the N-subjettiness
tagger, showing, that the method used for optimisation is working but
the assumption of it also applying to the combined dataset did not hold.
This can be explained by some training issues identified lately. The
training of the DeepAK8 tagger was done for the data of year 2016. It
therefore performs differently for the data of the other years. This
caused the DeepAK8 tagger to perform significantly worse than it could
have for several reasons. First, the optimization done for the data of
have for several reasons. First, the optimisation done for the data of
year 2018 could therefore not be applied to the other datasets. Second,
even for the data of 2016, a newer version of the background simulation
was used, that, in combination with the samples used for the signal,
@ -1557,6 +1557,7 @@ turned out to be the worst case scenario for the used training.
Recently, the training was improved to better perform across all
datasets, but those changes could not be incorporated into this thesis
due to it not being possible to do this in a reasonable timeframe.
\newpage
\begin{figure}
\begin{minipage}{0.5\textwidth}
@ -1573,10 +1574,9 @@ decay to qZ}
\begin{figure}
\hypertarget{fig:comp_2018}{%
\centering
\includegraphics[width=0.7\textwidth,height=\textheight]{./figures/limit_comp_2018.pdf}
\caption{Comparision of deep boosted and N-subjettiness tagger in the
high purity category using the data from year
2018.}\label{fig:comp_2018}
\includegraphics[width=0.55\textwidth,height=\textheight]{./figures/limit_comp_2018.pdf}
\caption{Comparison of DeepAK8 and N-subjettiness tagger in the high
purity category using the data from year 2018.}\label{fig:comp_2018}
}
\end{figure}
@ -1593,7 +1593,7 @@ the CMS experiment at a centre-of-mass energy of
\(\sqrt{s} = \SI{13}{\tera\eV}\) has been searched. Also a partial
dataset of \(\SI{35.92}{\per\femto\barn}\) was analysed, to be able to
compare the results to previous research. Monte Carlo simulations were
used to estimate the QCD background and signal.
used to model the QCD multijet background and signal shapes.
A selection was introduced to reduce background events and enhance
signal sensitivity. This selection required at least two jets, a
@ -1611,7 +1611,7 @@ the high TeV region. For the DeepAK8 tagger, a high purity category of
\(VvsQCD > 0.95\) and a low purity category of \(VvsQCD \le 0.95\) was
used. For the N-subjettiness tagger the high purity category was
\(\tau_{21} < 0.35\) and the low purity category
\(0.35 < \tau_{21} < 0.75\). These values were obtained by optimizing
\(0.35 < \tau_{21} < 0.75\). These values were obtained by optimising
for the highest possible significance of the signal.
A combined fit to the dijet invariant mass distribution of background
@ -1624,10 +1624,14 @@ respectively 5.5 TeV for the decay to qZ. Those limits are about 1 TeV
higher than the ones found in previous research, that found them to be 5
TeV resp. 4.7 TeV.
The DeepAK8 tagger performed worse than was expected. This can be
explained with some training issues identified lately. Therefore, with
an updated training, it is expected that the presented results can be
further improved.
The performance of the two taggers used have been compared and found to
produce similar results. This was unexpected, as the DeepAK8 tagger was
supposed to perform better than the N-subjettiness tagger. The result
analysing the decay to qW was \(\SI{0.1}{\tera\eV}\) better using the
DeepAK8 than with the N-subjettiness tagger, but analysing the decay to
qZ it was \(\SI{0.5}{\tera\eV}\) worse. The performance of the DeepAK8
tagger is likely to significantly improve with an updated training that
was not yet available in the framework used by this thesis.
\newpage
@ -1635,6 +1639,7 @@ further improved.
\printbibliography
\newpage
\appendix
\hypertarget{expected-and-observed-cross-section-limits}{%
@ -1654,17 +1659,18 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.10406 & 0.14720 & 0.07371 & 0.08165\tabularnewline
1.8 & 0.07656 & 0.10800 & 0.05441 & 0.04114\tabularnewline
2.0 & 0.05422 & 0.07605 & 0.03879 & 0.04043\tabularnewline
2.5 & 0.02430 & 0.03408 & 0.01747 & 0.04052\tabularnewline
3.0 & 0.01262 & 0.01775 & 0.00904 & 0.02109\tabularnewline
3.5 & 0.00703 & 0.00992 & 0.00502 & 0.00399\tabularnewline
4.0 & 0.00424 & 0.00603 & 0.00300 & 0.00172\tabularnewline
4.5 & 0.00355 & 0.00478 & 0.00273 & 0.00249\tabularnewline
5.0 & 0.00269 & 0.00357 & 0.00211 & 0.00240\tabularnewline
6.0 & 0.00103 & 0.00160 & 0.00068 & 0.00062\tabularnewline
7.0 & 0.00063 & 0.00105 & 0.00039 & 0.00086\tabularnewline
1.6 & 0.10 & 0.15 & 0.074 & 0.082\tabularnewline
1.8 & 0.077 & 0.11 & 0.054 & 0.041\tabularnewline
2.0 & 0.054 & 0.076 & 0.039 & 0.040\tabularnewline
2.5 & 0.024 & 0.034 & 0.017 & 0.041\tabularnewline
3.0 & 0.013 & 0.018 & 0.009 & 0.021\tabularnewline
3.5 & 0.0070 & 0.0099 & 0.005 & 0.004\tabularnewline
4.0 & 0.0042 & 0.0060 & 0.003 & 0.0017\tabularnewline
4.0 & 0.0042 & 0.0060 & 0.003 & 0.0017\tabularnewline
4.5 & 0.0035 & 0.0048 & 0.0027 & 0.0025\tabularnewline
5.0 & 0.0027 & 0.0036 & 0.0021 & 0.0024\tabularnewline
6.0 & 0.0010 & 0.0016 & 0.00068 & 0.00062\tabularnewline
7.0 & 0.00063 & 0.0010 & 0.00039 & 0.00086\tabularnewline
\bottomrule
\end{longtable}
@ -1681,17 +1687,17 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.17750 & 0.25179 & 0.12572 & 0.38242\tabularnewline
1.8 & 0.11125 & 0.15870 & 0.07826 & 0.11692\tabularnewline
2.0 & 0.08188 & 0.11549 & 0.05799 & 0.09528\tabularnewline
2.5 & 0.03328 & 0.04668 & 0.02373 & 0.03653\tabularnewline
3.0 & 0.01648 & 0.02338 & 0.01181 & 0.01108\tabularnewline
3.5 & 0.00840 & 0.01195 & 0.00593 & 0.00683\tabularnewline
4.0 & 0.00459 & 0.00666 & 0.00322 & 0.00342\tabularnewline
4.5 & 0.00276 & 0.00412 & 0.00190 & 0.00366\tabularnewline
5.0 & 0.00177 & 0.00271 & 0.00118 & 0.00401\tabularnewline
6.0 & 0.00110 & 0.00175 & 0.00071 & 0.00155\tabularnewline
7.0 & 0.00065 & 0.00108 & 0.00041 & 0.00108\tabularnewline
1.6 & 0.18 & 0.25 & 0.13 & 0.38\tabularnewline
1.8 & 0.11 & 0.16 & 0.078 & 0.12\tabularnewline
2.0 & 0.082 & 0.12 & 0.058 & 0.095\tabularnewline
2.5 & 0.033 & 0.047 & 0.024 & 0.037\tabularnewline
3.0 & 0.016 & 0.023 & 0.012 & 0.011\tabularnewline
3.5 & 0.0084 & 0.012 & 0.0059 & 0.0068\tabularnewline
4.0 & 0.0046 & 0.0067 & 0.0032 & 0.0034\tabularnewline
4.5 & 0.0028 & 0.0041 & 0.0019 & 0.0037\tabularnewline
5.0 & 0.0018 & 0.0027 & 0.0012 & 0.0040\tabularnewline
6.0 & 0.0011 & 0.0017 & 0.00071 & 0.0016\tabularnewline
7.0 & 0.00065 & 0.0011 & 0.00041 & 0.0011\tabularnewline
\bottomrule
\end{longtable}
@ -1708,16 +1714,16 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.08687 & 0.12254 & 0.06174 & 0.06987\tabularnewline
1.8 & 0.06719 & 0.09477 & 0.04832 & 0.03424\tabularnewline
2.0 & 0.04734 & 0.06640 & 0.03405 & 0.03310\tabularnewline
2.5 & 0.01867 & 0.02619 & 0.01343 & 0.03214\tabularnewline
3.0 & 0.01043 & 0.01463 & 0.00744 & 0.01773\tabularnewline
3.5 & 0.00596 & 0.00840 & 0.00426 & 0.00347\tabularnewline
4.0 & 0.00353 & 0.00500 & 0.00250 & 0.00140\tabularnewline
4.5 & 0.00233 & 0.00335 & 0.00164 & 0.00181\tabularnewline
5.0 & 0.00157 & 0.00231 & 0.00110 & 0.00188\tabularnewline
6.0 & 0.00082 & 0.00126 & 0.00054 & 0.00049\tabularnewline
1.6 & 0.087 & 0.12 & 0.062 & 0.07\tabularnewline
1.8 & 0.067 & 0.095 & 0.048 & 0.034\tabularnewline
2.0 & 0.047 & 0.066 & 0.034 & 0.033\tabularnewline
2.5 & 0.019 & 0.026 & 0.013 & 0.032\tabularnewline
3.0 & 0.010 & 0.015 & 0.0074 & 0.018\tabularnewline
3.5 & 0.0060 & 0.0084 & 0.0043 & 0.0035\tabularnewline
4.0 & 0.0035 & 0.0050 & 0.0025 & 0.0014\tabularnewline
4.5 & 0.0023 & 0.0034 & 0.0016 & 0.0018\tabularnewline
5.0 & 0.0016 & 0.0023 & 0.0011 & 0.0019\tabularnewline
6.0 & 0.00082 & 0.0013 & 0.00054 & 0.00049\tabularnewline
7.0 & 0.00050 & 0.00083 & 0.00031 & 0.00066\tabularnewline
\bottomrule
\end{longtable}
@ -1735,17 +1741,17 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.16687 & 0.23805 & 0.11699 & 0.35999\tabularnewline
1.8 & 0.12750 & 0.17934 & 0.09138 & 0.12891\tabularnewline
2.0 & 0.09062 & 0.12783 & 0.06474 & 0.09977\tabularnewline
2.5 & 0.03391 & 0.04783 & 0.02422 & 0.03754\tabularnewline
3.0 & 0.01781 & 0.02513 & 0.01277 & 0.01159\tabularnewline
3.5 & 0.00949 & 0.01346 & 0.00678 & 0.00741\tabularnewline
4.0 & 0.00494 & 0.00711 & 0.00349 & 0.00362\tabularnewline
4.5 & 0.00293 & 0.00429 & 0.00203 & 0.00368\tabularnewline
5.0 & 0.00188 & 0.00284 & 0.00127 & 0.00426\tabularnewline
6.0 & 0.00102 & 0.00161 & 0.00066 & 0.00155\tabularnewline
7.0 & 0.00053 & 0.00085 & 0.00034 & 0.00085\tabularnewline
1.6 & 0.15 & 0.22 & 0.11 & 0.33\tabularnewline
1.8 & 0.10 & 0.14 & 0.072 & 0.085\tabularnewline
2.0 & 0.077 & 0.11 & 0.056 & 0.064\tabularnewline
2.5 & 0.027 & 0.038 & 0.019 & 0.041\tabularnewline
3.0 & 0.015 & 0.021 & 0.010 & 0.0087\tabularnewline
3.5 & 0.0084 & 0.012 & 0.006 & 0.0066\tabularnewline
4.0 & 0.0049 & 0.0071 & 0.0035 & 0.0045\tabularnewline
4.5 & 0.0032 & 0.0046 & 0.0022 & 0.0026\tabularnewline
5.0 & 0.0022 & 0.0033 & 0.0015 & 0.0041\tabularnewline
6.0 & 0.0012 & 0.0019 & 0.00081 & 0.0018\tabularnewline
7.0 & 0.00057 & 0.00092 & 0.00037 & 0.00093\tabularnewline
\bottomrule
\end{longtable}
@ -1762,15 +1768,15 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.05703 & 0.07999 & 0.04088 & 0.03366\tabularnewline
1.8 & 0.03953 & 0.05576 & 0.02833 & 0.04319\tabularnewline
2.0 & 0.02844 & 0.03989 & 0.02045 & 0.04755\tabularnewline
2.5 & 0.01270 & 0.01781 & 0.00913 & 0.01519\tabularnewline
3.0 & 0.00658 & 0.00923 & 0.00473 & 0.01218\tabularnewline
3.5 & 0.00376 & 0.00529 & 0.00269 & 0.00474\tabularnewline
4.0 & 0.00218 & 0.00309 & 0.00156 & 0.00114\tabularnewline
4.5 & 0.00132 & 0.00188 & 0.00094 & 0.00068\tabularnewline
5.0 & 0.00084 & 0.00122 & 0.00060 & 0.00059\tabularnewline
1.6 & 0.057 & 0.08 & 0.041 & 0.034\tabularnewline
1.8 & 0.040 & 0.056 & 0.028 & 0.043\tabularnewline
2.0 & 0.028 & 0.040 & 0.020 & 0.048\tabularnewline
2.5 & 0.013 & 0.018 & 0.0091 & 0.015\tabularnewline
3.0 & 0.0066 & 0.0092 & 0.0047 & 0.012\tabularnewline
3.5 & 0.0038 & 0.0053 & 0.0027 & 0.0047\tabularnewline
4.0 & 0.0022 & 0.0031 & 0.0016 & 0.0011\tabularnewline
4.5 & 0.0013 & 0.0019 & 0.00094 & 0.00068\tabularnewline
5.0 & 0.00084 & 0.0012 & 0.00060 & 0.00059\tabularnewline
6.0 & 0.00044 & 0.00066 & 0.00030 & 0.00041\tabularnewline
7.0 & 0.00022 & 0.00036 & 0.00014 & 0.00043\tabularnewline
\bottomrule
@ -1789,15 +1795,15 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.06656 & 0.09495 & 0.04698 & 0.12374\tabularnewline
1.8 & 0.04281 & 0.06141 & 0.03001 & 0.05422\tabularnewline
2.0 & 0.03297 & 0.04650 & 0.02363 & 0.04658\tabularnewline
2.5 & 0.01328 & 0.01868 & 0.00950 & 0.01109\tabularnewline
3.0 & 0.00650 & 0.00917 & 0.00464 & 0.00502\tabularnewline
3.5 & 0.00338 & 0.00479 & 0.00241 & 0.00408\tabularnewline
4.0 & 0.00182 & 0.00261 & 0.00129 & 0.00127\tabularnewline
4.5 & 0.00107 & 0.00156 & 0.00074 & 0.00123\tabularnewline
5.0 & 0.00068 & 0.00102 & 0.00046 & 0.00149\tabularnewline
1.6 & 0.067 & 0.095 & 0.047 & 0.12\tabularnewline
1.8 & 0.043 & 0.061 & 0.030 & 0.054\tabularnewline
2.0 & 0.033 & 0.047 & 0.024 & 0.047\tabularnewline
2.5 & 0.013 & 0.019 & 0.0095 & 0.011\tabularnewline
3.0 & 0.0065 & 0.0092 & 0.0046 & 0.0050\tabularnewline
3.5 & 0.0034 & 0.0048 & 0.0024 & 0.0041\tabularnewline
4.0 & 0.0018 & 0.0026 & 0.0013 & 0.0013\tabularnewline
4.5 & 0.0011 & 0.0016 & 0.00074 & 0.0012\tabularnewline
5.0 & 0.00068 & 0.0010 & 0.00046 & 0.0015\tabularnewline
6.0 & 0.00038 & 0.00060 & 0.00024 & 0.00034\tabularnewline
7.0 & 0.00021 & 0.00035 & 0.00013 & 0.00046\tabularnewline
\bottomrule
@ -1816,15 +1822,15 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.05125 & 0.07188 & 0.03667 & 0.02993\tabularnewline
1.8 & 0.03547 & 0.04989 & 0.02551 & 0.03614\tabularnewline
2.0 & 0.02523 & 0.03539 & 0.01815 & 0.04177\tabularnewline
2.5 & 0.01059 & 0.01485 & 0.00761 & 0.01230\tabularnewline
3.0 & 0.00576 & 0.00808 & 0.00412 & 0.01087\tabularnewline
3.5 & 0.00327 & 0.00460 & 0.00234 & 0.00425\tabularnewline
4.0 & 0.00190 & 0.00269 & 0.00136 & 0.00097\tabularnewline
4.5 & 0.00119 & 0.00168 & 0.00084 & 0.00059\tabularnewline
5.0 & 0.00077 & 0.00110 & 0.00054 & 0.00051\tabularnewline
1.6 & 0.051 & 0.072 & 0.037 & 0.030\tabularnewline
1.8 & 0.035 & 0.050 & 0.026 & 0.036\tabularnewline
2.0 & 0.025 & 0.035 & 0.018 & 0.042\tabularnewline
2.5 & 0.011 & 0.015 & 0.0076 & 0.012\tabularnewline
3.0 & 0.0058 & 0.0081 & 0.0041 & 0.011\tabularnewline
3.5 & 0.0033 & 0.0046 & 0.0023 & 0.0042\tabularnewline
4.0 & 0.0019 & 0.0027 & 0.0014 & 0.00097\tabularnewline
4.5 & 0.0012 & 0.0017 & 0.00084 & 0.00059\tabularnewline
5.0 & 0.00077 & 0.0011 & 0.00054 & 0.00051\tabularnewline
6.0 & 0.00039 & 0.00057 & 0.00026 & 0.00036\tabularnewline
7.0 & 0.00019 & 0.00031 & 0.00013 & 0.00036\tabularnewline
\bottomrule
@ -1843,18 +1849,36 @@ Mass {[}TeV{]} & Exp. limit {[}pb{]} & Upper limit {[}pb{]} & Lower
limit {[}pb{]} & Obs. limit {[}pb{]}\tabularnewline
\midrule
\endhead
1.6 & 0.07719 & 0.10949 & 0.05467 & 0.14090\tabularnewline
1.8 & 0.05297 & 0.07493 & 0.03752 & 0.06690\tabularnewline
2.0 & 0.03875 & 0.05466 & 0.02768 & 0.05855\tabularnewline
2.5 & 0.01512 & 0.02126 & 0.01080 & 0.01160\tabularnewline
3.0 & 0.00773 & 0.01088 & 0.00554 & 0.00548\tabularnewline
3.5 & 0.00400 & 0.00565 & 0.00285 & 0.00465\tabularnewline
4.0 & 0.00211 & 0.00301 & 0.00149 & 0.00152\tabularnewline
4.5 & 0.00118 & 0.00172 & 0.00082 & 0.00128\tabularnewline
5.0 & 0.00073 & 0.00108 & 0.00050 & 0.00161\tabularnewline
6.0 & 0.00039 & 0.00060 & 0.00025 & 0.00036\tabularnewline
7.0 & 0.00021 & 0.00034 & 0.00013 & 0.00045\tabularnewline
1.6 & 0.067 & 0.095 & 0.047 & 0.095\tabularnewline
1.8 & 0.044 & 0.063 & 0.032 & 0.048\tabularnewline
2.0 & 0.032 & 0.045 & 0.023 & 0.045\tabularnewline
2.5 & 0.012 & 0.017 & 0.0088 & 0.013\tabularnewline
3.0 & 0.0064 & 0.009 & 0.0046 & 0.0032\tabularnewline
3.5 & 0.0036 & 0.0051 & 0.0026 & 0.0039\tabularnewline
4.0 & 0.0021 & 0.0029 & 0.0015 & 0.0027\tabularnewline
4.5 & 0.0013 & 0.0018 & 0.00088 & 0.00094\tabularnewline
5.0 & 0.00083 & 0.0012 & 0.00057 & 0.00150\tabularnewline
6.0 & 0.00046 & 0.00072 & 0.00031 & 0.00043\tabularnewline
7.0 & 0.00023 & 0.00037 & 0.00015 & 0.00049\tabularnewline
\bottomrule
\end{longtable}
\newpage
\section*{Erklärung}
Hiermit bestätige ich, dass die vorliegende Bachelorarbeit von mir
selbstständig verfasst wurde und ich keine anderen als die angegebenen
Hilfsmittel - insbesondere keine im Quellenverzeichnis nicht benannten
Internet-Quellen - benutzt habe. Die Arbeit wurde bisher weder gesamt
noch in Teilen einer anderen Prüfungsbehörde vorgelegt. Die eingereichte
schriftliche Fassung entspricht der auf dem elekronischen
Speichermedium. Ich bin damit einverstanden, dass die Bachelorarbeit
veröffentlicht wird.
\vspace{5cm}
\parbox{5cm}{\hrule
\strut \footnotesize Ort, Datum} \hspace{1cm}\parbox{5cm}{\hrule
\strut \footnotesize David Leppla-Weber}
\end{document}

View File

@ -10,10 +10,10 @@
\contentsline {subsection}{\numberline {3.1}Large Hadron Collider}{6}{subsection.3.1}%
\contentsline {subsection}{\numberline {3.2}Compact Muon Solenoid}{6}{subsection.3.2}%
\contentsline {subsubsection}{\numberline {3.2.1}Coordinate conventions}{7}{subsubsection.3.2.1}%
\contentsline {subsubsection}{\numberline {3.2.2}The tracking system}{8}{subsubsection.3.2.2}%
\contentsline {subsubsection}{\numberline {3.2.2}The tracking system}{7}{subsubsection.3.2.2}%
\contentsline {subsubsection}{\numberline {3.2.3}The electromagnetic calorimeter}{8}{subsubsection.3.2.3}%
\contentsline {subsubsection}{\numberline {3.2.4}The hadronic calorimeter}{8}{subsubsection.3.2.4}%
\contentsline {subsubsection}{\numberline {3.2.5}The solenoid}{9}{subsubsection.3.2.5}%
\contentsline {subsubsection}{\numberline {3.2.5}The solenoid}{8}{subsubsection.3.2.5}%
\contentsline {subsubsection}{\numberline {3.2.6}The muon system}{9}{subsubsection.3.2.6}%
\contentsline {subsubsection}{\numberline {3.2.7}The Trigger system}{9}{subsubsection.3.2.7}%
\contentsline {subsubsection}{\numberline {3.2.8}The Particle Flow algorithm}{9}{subsubsection.3.2.8}%
@ -23,17 +23,17 @@
\contentsline {section}{\numberline {5}Preselection and data quality}{13}{section.5}%
\contentsline {subsection}{\numberline {5.1}Preselection}{13}{subsection.5.1}%
\contentsline {subsection}{\numberline {5.2}Data - Monte Carlo Comparison}{15}{subsection.5.2}%
\contentsline {subsubsection}{\numberline {5.2.1}Sideband}{15}{subsubsection.5.2.1}%
\contentsline {subsubsection}{\numberline {5.2.1}Sideband region}{15}{subsubsection.5.2.1}%
\contentsline {section}{\numberline {6}Jet substructure selection}{20}{section.6}%
\contentsline {subsection}{\numberline {6.1}N-Subjettiness}{20}{subsection.6.1}%
\contentsline {subsection}{\numberline {6.2}DeepAK8}{21}{subsection.6.2}%
\contentsline {subsection}{\numberline {6.3}Optimization}{22}{subsection.6.3}%
\contentsline {subsection}{\numberline {6.3}Optimisation}{22}{subsection.6.3}%
\contentsline {section}{\numberline {7}Signal extraction}{24}{section.7}%
\contentsline {subsection}{\numberline {7.1}Systematic Uncertainties}{24}{subsection.7.1}%
\contentsline {section}{\numberline {8}Results}{26}{section.8}%
\contentsline {subsection}{\numberline {8.1}Partial dataset}{26}{subsection.8.1}%
\contentsline {subsubsection}{\numberline {8.1.1}Comparison with existing results}{26}{subsubsection.8.1.1}%
\contentsline {subsection}{\numberline {8.2}Combined dataset}{28}{subsection.8.2}%
\contentsline {subsection}{\numberline {8.3}Comparison of taggers}{30}{subsection.8.3}%
\contentsline {section}{\numberline {9}Summary}{32}{section.9}%
\contentsline {section}{\numberline {8}Results}{25}{section.8}%
\contentsline {subsection}{\numberline {8.1}Partial dataset}{25}{subsection.8.1}%
\contentsline {subsubsection}{\numberline {8.1.1}Comparison with existing results}{25}{subsubsection.8.1.1}%
\contentsline {subsection}{\numberline {8.2}Combined dataset}{27}{subsection.8.2}%
\contentsline {subsection}{\numberline {8.3}Comparison of taggers}{29}{subsection.8.3}%
\contentsline {section}{\numberline {9}Summary}{31}{section.9}%
\contentsline {section}{\numberline {A}Expected and observed cross section limits}{34}{appendix.A}%